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AUTHOR'S FOREWORD

Since the second half of the last century, when Maxwell and
Boltzmann made clear the principles of the theory of gases, the main
problem on which the kinetic theory has centered has been the solution
of the Boltzmann equation. The efforts of many authors resulted in
a high level of understanding of the principal aspects of the kinetic
theory, and the solution of a number of problems which both interested
scientists and were of practical interest. The rapid growth of
computer technology opened new possibilities for solving these problems.
Nevertheless, at present there exists no general or sufficiently

efficient method for solving the Boltzmann equation.

In 1965, when a new BESM-6 computer began operation, a small group
of staff members of the Computer Center of the Academy of Sciences of
the USSR began investigations in the area of the kinetic theory,
attempting to develop methods for solving the mechanics problems
involved in rarefied gases. This collection reflects the first results

obtained by the authors during 1965-1967.

Several lines of investigation were pursued. The aim of the
first was to find accurate solutions for the Boltzmann equation. These
solutions can be used for testing the general solution methods which
are difficult to obtain theoretically. This includes the work of
V. A. Rykov and F. G. Cheremisin, as well as the work on spatially
uniform flows in the kinetic theory done by A. A. Nikol'skiy, and
the work of V. A. Rykov and T. I. Chukanov on the relaxation of a
mixture of gases, which, aside from the kinetic theory, is of great

interest from the standpoint of chemical kinetics.

The second direction is associated with the search for direct
numerical solutions to the Boltzmann equation problem (F. G. Cheremisin,
Ye. F. Limar). Some difficulties which arose in developing a general
method for the solution of Boltzmann equations may be overcome by

purely analytical methods (Ye. M. Shakhov).

il
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Investigations of the flow of rarefied gas include the problem [k
of interaction of gas particles with the surface of solids. The
results obtained in this area are illuminated in the article by

A. A. Pyarnpuu.

The collection also contains work which deals with the use of
the classical Enskog-Chapman method as applied to the flow of chemically
active gas mixtures (B. V. Alekseyev, B. V. Alekseyev and V. R. Yanovskiy).

It is hoped that this work will be of use to specialists and to
all those who are interested in the theory of rarefied gases, and
that it will facilitate rapid solution of many theoretical and practical

problems.

The authors wish to express their deep gratitude to A. A. Nikol'skiy,
who directed the work on rarefied gases at the time when it was organ-
ized and who obtained the initial results, and to O. S. Ryzhov for
the discussion of the work and useful suggestions. It is perhaps super-
fluous to say that the authors are indebted to a large extent to

each other for mutual success.
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NUMERICAL METHODS FOR SOLVING THE BOLTZMANN EQUATION
(A Review)
Ye. F. Limar, Ye. M. Shakhov, and V. P. Shidlovskiy
Introduction

The integro-differential Boltzmann equation, which is the principal
equation in the kinetic theory of gaées, was obtained by Boltzmann approxi-
mately one hundred years ago. Since that time, significant success has been
achieved in the investigation of this equation by means of analytical methods,
the principal ideas of which were proposed long ago by Maxwell and Boltzmann.

In the main, these achievements pertain to the investigation of flow close to
the limiting condition of a continuous medium. Subsequently, completely new
possibilities arose associated with the use of high-speed computers. Since

the development of the new technology requires most accurate data retrieval

just in that range of characteristic parameters where the accepted analytical
methods are not applicable, the first numerical methods for the solution of the
Boltzmann equation began to appear. In the recent monograph of M. N. Kogan [1],
a review of such methods is given. However, after this monograph was published,
a new interesting work appeared in literature in which the earlier described

methods were either modified or new methods were proposed.

In the case of numerical solution of the Boltzmann equation, great
difficulties arose and until this time attempts were made to solve only the
simplest problems. One of the first exact solutions of the Boltzmann equation
was given by V. A. Rykov [2], and V. A. Rykov and T. N. Chukanova [3] for the
relaxation problem of the distribution function which depends only on the
velocity modulus in homogeneous space. In reference [2], it was shown that the
multiplicity of the collision integral can be reduced to two; this enables one
to solve the problem by ordinary methods with great accuracy. Numerical methods
exist for solving more complex one-dimensional and even two-dimensional pro-
blems, however, in the majority of cases, it is almost never possible to
indicate the degree of accuracy of the obtained solutions, or the accuracy in

approximating the original Boltzmann equation.

* Numbers in the margin indicate pagination in the foreign text.
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At present, the Monte Carlo statistical sampling methods are developed
more than any other and these have given the most interesting results. These
methods were first proposed by Alder, Wainwright, and others [L4, 5], who made
the first attempt to solve the relaxation problem in gases in a homogeneous
space. The Monte Carlo methods were further developed by Haviland and Lavin
(6, 7, 8], Bird [9-12] as applied to the boundary problem in the theory of

rarefied gases.

The review considers the methods which show promise in solving the Boltz-
mann equation in a broad range of Knudsen numbers. Therefore, we shall not
touch upon such methods as the Monte Carlo method in the theory of one collision
for flow close to free molecular flow. It has been described in great detail
in M. N. Kogan's monograph [1], and in the work of V. A. Perepukhov (for example,
see reference [13]), and it already became a working method for calculation of
the hydrodynamic flow past a body of complex shape under conditions close to

free molecular flow.

The discrete velocities method, which performed very well in solving
the problem in the theory of radiation, is used now successfully for solving
the kinetic model equation. The review briefly presents the work of B. Hamel
and M. Wachman, which in fact is the first attempt to apply this method to the

solution of the Boltzmann equation.

Finally, the last part of this review presents certain new approaches to
the solution of the Boltzmann equation; these were developed by F. G. Cheremisin

[14] and Ye. M. Shakhov [15, 16], and are published in this collection.

1. Monte Carlo Method

These are generally the methods in which molecular motion is modeled on
a high-speed electronic computer. However, one can also include here those
methods in which the Monte Carlo method itself is used only in calculation of

the Boltzmann collision integral.

Since the gas consists of a large number of molecules, its motion can be é?
modeled by two methods: either using the properties of the symmetry of flow,
limiting oneself only to modeling of the phenomenon in an extremely thin layer
(here the necessary number of molecules to be considered becomes acceptable) or

one models the real molecules as spheres of significantly larger diameter, such



as will produce the necessary Knudsen number in calculations with a relatively

small number of spheres.

Haviland-lavin Method. One of the Monte Carlo methods was first described

in the work of Haviland and Lavin [6, 7]. Using this method, problems of heat
transfer between parallel plates [6] and later the problem of the structure of
shock waves [7] were solved. The most detailed description of the method and
the results was given in the book [8]. In the above-mentioned problems the
distribution function depends on two velocities u_, V and one physical space
coordinate x. The solution of the problem by this Monte Carlo method is some-

what analogous to the following iteration for solving one dimensional stationary

equations
(r) bmax 2T
] X, u oo o : Ar) P
w 0L B TP GG L bdb o deg i f 7 i
ax
-~ 00 0 0
(r—1 T, (r Celr=1, g
w UV v = T i f (x, V)i,
-+ - -»
where, as usual g = u -~ V ; b, ¢ - collision parameters; primed variables refer

to the velocities at the collision. In reality the iteration process is modeled

as follows.

The physical space along the x coordinate is subdivided into cells, which
have the shape of a parallelopiped with the area of the base AA and the altitude
Ax. The velocity space u_, V is subdivided into cells which can be represented
in the form of disks of radius V and thickness AV and height Aux. The phase
space cell has a volume 2ﬂVAVAuxAAAx. All of the molecules which have one of

velocities Iu l > u or V> V_, fall in the end cells; here u and V_ are the
x XO (0] Xg (0]

boundaries of next to the last cell. Inside the cell the distribution function

value is considered to be constant and equal to the distribution function wvalue

in the center of the cell.

The molecules with the distribution function of the (r - 1)% approximation /8
are known as field molecules; the molecules by means of which the distribution
function of the r# approximation is sought are known as the test molecules.

The motion and collision of test molecules is modeled in a medium of field

molecules. The test molecules are chosen at the boundary by a random



method in accordance with the known distribution density of particles which fall
outside the boundaries. Here it is necessary to renormalize the distribution
function in order to obtain the probability density, the integral of which is
equal to unity with respect to all velocities. The methods for obtaining the
random numbers with the known distribution density have been described in detail

in the book [17].

Subsequently, for the chosen particle the flight time without collision
in a given space cell is selected by a random method. If the collision occurs
inside the cell then, by the random method in accordance with the field particle
density distribution, the velocity for the field particle which must collide
with the test particle is selected, and the collision calculation is performed.
The test particle which we are observing will acquire a new velocity and for it
a free path time is again sampled. If the particle crosses the boundaries of
the cell without any collision, then in the next cell the free path time is
again sampled. The number of test molecules, the motion of which is observed
from the moment of crossing the boundary to the moment of crossing the boundary
again, must be such that the obtained distribution function has a sufficiently

small fluctuation.

It is assumed that the distribution function in this cell is proportional
to the time which is spent by the test particles in this cell. In the course
of the whole iteration process, the time spent by the test particles in each
cell of the phase space is accumulated. If this quantity is normalized in each
cell by an appropriate method, then we shall obtain a density distribution in
the r# approximation. After all of the sampling in sequential iteration is
completed the cross-sectional area AA of the physical space cell is selected in

order to renormalize the obtained distribution function.

In solving the heat transfer problem AA is selected in such a way that the
average density of the test particles in the selected space between two walls
is of predesigned magnitude. 1In the study of the structure of a shock wave
AA is selected on the basis of the condition that the mass flow of test mole- 19

cules through a unit area at the boundary corresponds to the actual mass flow.

At the end of each iteration moments of the distribution function are
calculated. In the calculation process, it is necessary to remember the

distribution function of two iterations. The iteration process is completed

L



when the determined moments of the distribution function in two successive

iterations coincide.

Haviland and Lavin solved the heat transfer problem between two parallel
plates and the problem of the structure of shock waves for solid spheres and

Maxwell's molecules.

The calculation errors may be subdivided into two classes, statistical and
systematic. The systematic errors are associated with the choice of the di-
mensions of the cell, replacement of the distribution function by a step function,
inaccurate calculation of the integral, which represents the collision
frequency, and other deterministic effects. The statistical errors, which occur
due to the limited number of games played, decrease as l/N_%, where N is the

number of games. Their effect may be determined experimentally.

In the majority of cases in solving these problems nonstatistical
fluctuations are observed, the magnitude of which is significantly greater than
the magnitude of the assumed statistical fluctuations. The structure of these
fluctuations depends, primarily, on the form of the zero iteration. Apparently
their occurrence is associated with the Markoff's nature of the iteration

calculation process.

Such methods have one more drawback. When the Knudsen number is decreased
significantly, the computation time increases and the accuracy of the method
decreases., Apparently, the Monte Carlo methods of this type give the best
results in the investigation of free molecular and nearly free molecular

flows.

In solving even one-dimensional problems by the Monte Carlo method, it is
necessary to have access to a large operational memory. For pseudo-Maxwell's
malecules, the collision cross section of which has the form o = o—OgO/g.

V. I. Vlasov [18] has shown that one can significantly reduce the size of the
required memory. For these molecules the collision frequency is independent of
particle velocity, and the probable velocity of the molecules which

collide with the test molecule is proportional to the distribution function of

the molecules in a given cell of the physical state. In reference [18], the /10
velocity of the test molecules which passed through a given cell or physical

state was remembered with 1/V probability, and when the next collision was

sampled, this velocity was taken as the velocity of the molecule which collides

5



with the test molecule. 1In fact, in solving the heat transfer problems between
plates, seven molecules were remembered in each of the geometric cells. The
obtained results were practically coincident with the results of Lavin and

Haviland.

In the work of Perlmutter [19] another method is proposed for reducing the
required memory of the electronic digital computer. In solving the flow problem with
the Couette method, analogous to the Haviland and Lavin method, it was pro-
posed that the distribution of field molecules has the form of a double-flow
Maxwell distribution, first proposed by lees [20]. 1In this case, it is neces-

sary to remember only four parameters P,» C.o P_s C_ which enter in this

4
distribution for each of the cells of the physical state. The meanings of these
parameters are: density and temperature of molecules with positive or negative
projections of the velocity upon the coordinate axis, perpendicular to the walls
respectively. Perlmutter's results coincide with the results of Lavin and

Haviland.

The calculation method proposad by Perlmutter is not universal since it is
strongly dependent on the choice of the approximation function. However, the
idea of more accurate approximation of the distribution function inside the phase

space cell apparently deserves some attention.

The Bird Method. A somewhat different Monte Carlo method was proposed by

Bird [9-12]. 1In contrast to the method used by Haviland this method does not
contain iterations. The stationary condition is obtained as the limit of the
nonstationary flow, which occurs upon instantaneous introduction of a body into

a homogeneous flow. After a certain period of time, a steady state is achieved.
The value of the stationary flow may be calculated in the course of long time
intervals by averaging the quantity in time in order to reduce

random scatter. In reference [9], the time for the establishment of equilibrium
of the translational degrees of freedom was evaluated. In reference [10, 12], the
structure of the shock wave in a gas consisting of solid spheres was calcu-
lated. In reference [11], the results are given for the calculations of aero-

dynamic flow past a cylinder, a sphere and a plate. However, in the subsequent




e

work [12], the author shows that certain procedures used in [10, 11] were [}l

. 1
incorrect .

The essence of the method is as follows. The physical coordinate space is
subdivided into cells. Several thousand molecules are taken and by the random
method, in correspondence with preassigned distribution functions, a configura-
tion of molecules is selected for the initial moment of time. It is assumed
that inside the physical space cell all of the molecules have the same coordi-
nates. The velocity components of all of the molecules are also remembered.

The process of motion and collision of molecules is subdivided in time; it is
considered that during the time interval Atm only collisions in all of the cells
of the physical state take place, and since the relative position of the mole-
cules within the cell of physical space is neglected, the probability of their
collision depends only on their relative velocities. A pair of molecules in the
considered physical space cell is selected by a random method. It remains there
with a probability proportional to relative velocity. If the pair remains there,
the collision calculation is carried out and the new velocity components of the
colliding molecules are recorded. The number of collisions is determined as the
quotient from dividing Atm by At, where At is the mean time between collisions
for a given cell of the physical space per molecule. The time interval Atm is

taken to be significantly small than the average time between collisions.

After all the collisions have been completed, the overall time is increased
by Atm and all molecules are moved by an appropriate distance. At the boundaries
the molecules are either generated with a corresponding density distribution or

are annihilated if they fall outside the boundaries of the given region.

In calculating shock wave structure, it was discovered that the results
are little dependent on the choice of cell dimensions. The comparison of the
density profile when M = 1.5 with the density profile obtained by the Navier-
Stokes equation shows that nonstatistical oscillations behind the shock wave

are small. Calculations were made for the shock wave

1. Apparently, as a result of this, some individual results in [11] are not
even in qualitative agreement with the already available data. However,
satisfactory results in [12] lead us to believe that after correcting the
error this method can produce more accurate results.



with Mach numbers ranging from 1.5 to 10. The longitudinal and transverse 4}2
distribution functions are represented at several points of the shock wave

front. When the Mach number is ten, the distribution function has two maxima,

and the density profile of the shock wave is not as steep as predicted by the
Navier-Stokes equation or the Mott-Smith solution. The time required for cal-

culating shock wave structure on a KDF-Q computer was 20 minutes.

The Nordsieck Method. In solving Boltzmann equation by the iteration

method, the collision integral calculation is the most difficult. Nordsieck
[21] proposed a Monte Carlo method for the calculation of the complete five-
dimensional collision integral for solid spheres in axially symmetric flows.
Here, the collision integral in velocity space depends on two parameters

ux, V (where ux is the velocity of molecules along the axis of symmetry and V
is the velocity of molecules perpendicular to the axis of symmetry). In order
to accelerate the count, eight uniformly distributed quantities are immediately
generated (three quantities give the value of the parameter for which the
integral is calculated, while three others give a point in which the integral
function is being calculated, the two remaining quantities are the collision
parameters of the molecules), and the integrals for all 256 values of ux and V
are calculated (in the case of fixed value of all physical coordinates). This
allows one to increase the number of tosses through the use of symmetry of
collisions without additional arithmetic operations. The results of the
calculations of the integrals are subsequently smoothed by the least squares

method.

The reference shows preliminary results of the calculations of the problem
of relaxation and shock wave structure. In reference [22], it was shown
by means of this program how the Mott-Smith method solution for shock wave
structure gives a nonsensical solution. Unfortunately, in the work which is
available to us, there is very little data to judge the advantages of this

method as compared with other Monte Carlo methods.

One more variation of the Monte Carlo method was proposed by Gentry,
Harlow and Martin [23] for modeling a flow with a transverse velocity gradient,
when the particles are moving between two plane-parallel walls. However, due
to the limitations of the computers, the numerical experiments which were

described were performed for an assembly of two-dimensional molecules, which
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indicates the low economic efficiency of the method.

The Monte Carlo method for solving the relaxation problems in homogeneous 1}3

space. One of the simplest problems for the Boltzmann equation is the relaxa-
tion of some distribution function in homogeneous space to the Maxwell
distribution function. In the work of Alder and Wainwright [4, 5], the
solution of such a problem was modeled as follows: the motion and the colli-
sion of a small number of molecules (of the order of one hundred) in a cubic
cell was considered. If any of the molecules crosses the boundary, it is
considered that an exactly identical molecule enters the cell through an
opposite face of the cubic cell (periodicity condition). In this modeling
process coordinates and velocities of all molecules are remembered. The ratio
of the number of molecules in a given velocity integral to the number of
molecules in this velocity interval at equilibrium is a function of the number
of collisions. The same problem was solved by Bird by an analogous method [9],
but in contrast to the work of Alder and Wainwright, he kept only the velocity
of molecules in the memory. This enabled him to obtain results with high
accuracy. In general, they are in good agreement with the results of [5]1. An
interesting conclusion was drawn: the high-velocity molecules undergo
relaxation most slowly, while molecules with velocities close to the root-mean-

square velocity undergo the most rapid relaxation.

The method developed by Alder and Wainwright with some modification was
used for the investigation of relaxation in a mixture of gases by Polak and
others [24, 25]. A comparison with the exact solution of the Boltzmann equation

[3] for these initial data has shown satisfactory accuracy of the method.

Toshizawa [26] solved the problem of the relaxation of chemically reacting
gases by the Monte Carlo method. Instead of considering the collision of three
bodies, the activated molecule method was used. Only three types of collisions
were considered: elastic, inelastic and activated; all molecules and atoms were
modeled by solid spheres. The relaxation phenomenon was modeled by observing
the collisions of a small number of particles (of the order of 50). For each
type of particle, three components were remembered: velocity, type of
particle and its internal energy. Initially, the type of particle was drawn,
followed by its velocity and mean free path and finally the internal energy of

the molecule when necessary. Subsequently, by an analogous method, the 4}4



characteristic of the second particle was drawn and the velocity of both

particles after collision was calculated; the results of the reaction were put
into the memory. The behavior of this particle was observed over a period of time
At, which is significantly shorter than the relaxation time. After the

histories of all test particles were observed, new distribution densities of
particles and internal energy were calculated. From time to time, the

values of certain moments were calculated and printed out. Due to the small
number of particles large fluctuations were observed, particularly near equili-
brium. The author expresses the opinion that these fluctuations are associated

with the Markoff nature of the proposed Monte Carlo method.

2. Discrete Velocities Method

The discrete velocities method was proposed by ChandraseKhar and was
utilized successfully in solving problems in the theory of radiation and the
theory of neutron transport. In problems on the flow of rarefied gases, it was
first used in the work of Broudwell [27, 28], but only at a very approximate
level. At present, the discrete ordinate technique is used successfully in

solving the model Krook equation [29].

B. Hamel and M. Wachman using this method for the linearized Boltzmann
equation solved the problem of Couette flow [30], and then a nonlinear

relaxation problem [31].

Let us consider the last work in greater detail, since this in essence is
the first attempt to use the discrete velocity technique for the nonlinear

Boltzmann equation.

Let f(?) be the distribution function for which the Boltzmann equation can
be written as usual. The integral is calculated by the reiteration method,
where in calculation of the integral from the collision parameters quadrature,
Laguerre equations were used, and in calculation of the velocity integrals
Gauss-Hermite quadrature equations were used. After all of the integrals were
calculated in all nodes, the derived system of differential equations was
solved by the Lantsosh method. Thus, the value of the distribution function

at the moment t + At was calculated.

—’
Let us introduce the function Y (V) by the following method:

10
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f(\7) -V (V).

Then the Boltzmann equation will acquire the form

d V oo 2T T/2
dy(V) _ '

e T T 1 BV (g - (15
o 0

0 nd - - >
~y(V)w(E)]| £~ V' sinecosododedE.

As the initial condition when t = O we stipulate YO(V).

In this work, the discrete ordinate technique was adapted to the solution
of this very type of problem with the initial data. In the (n - 1)% interval,
the calculated distribution function Y(;) is remembered in some network of
; values. Subsequently, the collision integral is calculated on the basis of
this function. In such calculation, it is necessary to know the value of the
distribution function outside the nodes; therefore, it is necessary to use the
interpolation method or extrapolation formulas. The results of calculations
show that the selected network gives good results for Y functions close to con-
stant (i.e., for the initial function close to the Maxwell function). Otherwise,
even when t is equal to one collision time, the density and temperature decrease
by 10% and reveal a tendency to further decrease. Therefore, calculations are
carried out until t = 1, although on the basis of the extrapolative evaluation
of the author complete relaxation occurs at approximately t = 4. It is noted

in the work that normal stress behaves in the same manner as indicated by the

model equation.

3. Other Methods for Solving the Boltzmann Equation

F. G. Cheremisin and Ye. M. Shakhov, staff members of the Computer Center
of the Academy of Sciences of the USSR, proposed other methods for solving the
Boltzmann equation, significantly different from those which were discussed

above.

F. G. Cheremisin [14] proposes the use of the iteration process for the
kinetic equation, written in the integral form, which includes the probabilities

of free paths of the molecule.

Assuming that the nt iteration is sufficiently close to the accurate
solution, the moment of the distribution function in an approximate form of the

function itself is expressed taking into account the boundary conditions in the

11
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form of a network of successive approximations directly through the distribu-

tion function of the zero approximation., Since the zero approximations for

the distribution function as a function of the velocity of molecules may be

assigned in analytical form, such an approach gives the possibility of solving 1}6

the problem on an electronic digital computer with limited operational memory.

However, the essence of the proposals of F. G. Cheremisin is not limited
to the reduction of the required machine memory. In order for the machine time,
which increases inadmissibly with an increase in the number n, to be applicable
in practice, the Monte Carlo method with a sufficiently small number of trials
(where the number could be smaller as the number of iterations of the distribu-
tion function becomes smaller, from which the integrals are calculated) is
proposed [14] for calculations of the internal integrals from molecular velocity
and collision parameters. The calculations which were made by the author for
the relaxation and the shock wave structure problems have shown that when the
number of random points for the calculation of the integrals of the lowest link
in the chain (from the initial distribution function), is several tenths, and
sometimes several units, a satisfactory accuracy of the result is achieved. The
integration of space variables and calculation of the distribution functions

moments are carried out by the regular method.

Apparently, the number of iterations n is smaller, the closer the initial
function is to the precise value. As the initial approximation, it is proposed
that solution of Krook's relaxation equation be used. The author hopes that
his proposed method for numerical solution of the Boltzmann equation will allow
solution of the problem of the theory of rarefied gases using modern computers

in a practically reasonable time.

Ye. M. Shakhov proposed a fundamentally different method for solving the
Boltzmann equation [15, 16]. The difficulties associated with the solution
of the Boltzmann equation result not only from the large number of independent
variables, but also from the complex structure of the collision integral. It
was proposed in [15] that the collision integral be approximated in the moment
sense (i.e., so that the several first moments from the approximate and from the
Boltzmann collision operators would coincide). The equation for the dis-
tribution function with an approximate, in the moment sense, collision operator

is an equation approximating the Boltzmann equation. Consequently, the

12
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distribution function which satisfies this equation is an approximate solution
of the Boltzmann equation. It is assumed that the approximation accuracy
increases with an increased number of moment relationships for the collision

operator.

Apparently, in such an approximation several first moment equations from [}7
the approximate kinetic equation and from the precise Boltzmann equation will
coincide, and there will be as many coincident equations as there are first
moment relationships fulfilled for the collision integral. Since in the
rarefied gas mechanics, the principal interest lies in a few first moments of
the distribution function in that region which makes the principal contribution
to the magnitude of these moments, one can hope that in the approximation one
should limit oneself to moment relationships which include power monomials of
the molecular velocity components not higher than of the third degree. The
results of the author's calculations for the relaxation problem confirm this

viewpoint.

The form of the approximate collision operator is not determined by

moment relationships of the type described above.

The approximation is directly reduced to replacing the reverse collisions
integral and collision frequency by suitable expressions dependent on the
molecular velocities and on some set of macroscopic quantities. The macro-
parameters which are included in the reverse collisions integral are determined
by the moment relationships. The collision frequency is approximated with
sufficient accuracy for many problems by the corresponding expressions for the
local-Maxwell distribution function. In case of necessity, deviations from
this expression may be found by utilizing the moment relationships separately
for the direct collisions integral. Another method for approximating collision
frequency through the distribution function moments involves expansions for low

and high velocities.

The integrals from the collision integral may be expressed with sufficient
accuracy through the distribution function moments; this significantly reduces

the required computation time.

Thus, the approximating equation in each approximation has a structure
similar to the structure of the Krook relaxation equation in that the reverse

collision integral and collision frequency are explicit functions of molecular

13



velocities and distribution function moments. Use of the discrete velocities
method is proposed for numerical solution of the approximate equation in any

approximation.

Summary /18

The review considers the principal attempts to obtain the numerical solution
or modeling of the Boltzmann equation over a broad range of Knudsen numbers.
The review of these results shows that only initial steps have been taken in the
area of the development of numerical methods. The proposed methods are at

different stages of their development and many require a significant improvement.

In the presently most popular Monte Carlo methods, the equivalency of the
obtained solutions and the solution of the Boltzmann equation has not yet been
proven. One can say that the proposed method is quite logical and the results
appear reasonable., However, in all the solutions associated with these methods,
nonstatistical fluctuations occur in the area of high densities; the nature of
these fluctuations is not yet clear. The Monte Carlo methods are not well
suited in the area of small Knudsen numbers. In this case, the distribution
function must be close to the local-Maxwell function, and the collision integral
must be close to zero. Here all of the calculations associated with collisions
are conducted too coarsely, which leads to insufficiently accurate distribution

function calculation. It is possible that this in fact determines the fluctua-

tions.

Among the Monte Carlo methods, the Bird method appears to be most attractive,
since it is more directly related to the Boltzmann equation. However, it also
has the same drawbacks. Like other Monte Carlo methods, it gives the best

results under the conditions which are close to the free molecular state.

The Nordsieck method is unique among other Monte Carlo methods, but it is
still difficult to judge its merit due to the unavailability of the results
obtained with it.

All of the Monte Carlo methods are characterized by slow convergence

and one cannot expect to obtain highly accurate results with their use. Great

possibilities are afforded in this sense by the deterministic methods. These

14



methods include the discrete ordinate technique. The direct use of this method
for solving the Boltzmann equation shows that in order to obtain the required
accuracy exceedingly large computer times are required in calculating the
collision integral. The use of approximating equations in combination with the
discrete velocities method will possibly improve computation accuracy and reduce

the required memory volume.

In summary one should say that all the methods considered in this review
are applicable at best to solution of one-dimensional problems. The possibility
for the practical applications to the solution of two-dimensional problems in

the theory of rarefied gases has not yet been proven.
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SOME SPATIALLY HOMOGENEOUS GAS MOTIONS

V. A. Rykov and F. G. Cheremisin

A study of the simplest precise solutions of the Boltzmann kinetic 122

equation was undertaken in [1-3].

For this solution it is characteristic that in going to the characteristic
velocities of particles, the dependence of the distribution functions on

spatial coordinates vanishes.

Isolation of such a class of spatially homogeneous solutions is of interest
due to the significant reduction in the number of independent variables,
which permits the use of electronic digital computers for obtaining numerical

solutions of the kinetic equation.

In this work a functional equation is derived for a spatially homogeneous
distribution function and examples of spatially homogeneous gas motions
are considered. Numerical calculation was conducted for one such motion

with the use of a model equation.

1. Determination of Spatially Homogeneous Solution

In this section we shall depart temporarily from the Boltzmann
equation and introduce the concept of a spatially homogeneous solution of
some equation,

L(f) =0 (1)

where L(f) is some operator of the sought function F(t,x,y,z), where t is
the time and x, y, and z are space coordinates. This operator contains the
derivative of f with respect to variable t only of the first order; no other

assumptions are made about its form.
Equation (1) may be differential or integro-differential.

Assume that equation (1) allows formulation of the Cauchy. problem with re-

spect to variable t, and assume that a unique solution exists. We can con- /23
sider the initial function assigned at the time t = to:
f(t“to’x’yyz)-"fo(X,y,Z) (2)

(meo< X <tooy 0o <Y <too, ~co <Z<40)s
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Definition 1. The Cauchy problem is called spatially homogeneous if, for
any point (xo, Yo zo) in the Oxyz system, there exist transformations of time,

coordinates, and the sought function
t” = T(t,XgsYga2g)s X°= XU, xs9:23%0sY0120)s72 =Z(t’x’y"z""o’yo""'o)’
y'=Y(t,x.)’.Z:xn'yn'lo)' f":(p(t:x:Yazlf:xoayOazo)s

dependent on this point (x zo) and when t = to moving the point (x

o’ Yo or Yo

zo) to the origin of the new coordinate system O'x'y'z' and the time t = tO to

tr = to so that equation (1) and the initial function (2), written in the new

sought functions and variables, will coincide with the initial ones.

The new independent variables and the sought functions will be differen-
tiated from the originals by primes. It is apparent from the definition that

in the new coordinate system, whose origin at the time t = t_  is placed at a

(0]

51 Yo zo), we have a Cauchy problem identical to the

case with the original coordinate system, i.e.,

L[f'(t',x':)"yl')]= 0, f'(t'= toax') y': Z') = f[)(x”
§7,2°) (oo<x’<too, =00y <to0,y =0<Z < too)e

randomly selected point (x

The initial function of such a Cauchy problem will be called spatially
homogeneous. Apparently, the transformation described in definition 1 must

belong to the class of invariant transformations of equation (1).

Let the known invariant transformation of equation (1) be
Ui T(t,SypeeesSp)s 7= Xty X, 9,2, 5000, )3
Y’“Y(t: Xy Y 2, bp"'y bm)3 Z'ﬂ-Z(t,x, Y, Z,Cl,...,C"); (3)

fr=2(t,x, 9,2, f2dy, 00054,

where sl, coey dq are random constants.

Definition 1 requires that the following condition be fulfilled:
T(to, S yseess Sp) =1L X(tgs Xgs Yo s Zgs @ sy ap) =0;
Y(tgs Xgs Yor Zgr Dysevas ) =05 (4)
Z(tys X Yo s Zgs Cyasees € ) =0
In general, these conditions enable us to consider only k+l+m+n+q-4 constants [2k
as random constants. Let us assume that they are random functions of parameters

XO, yo, Zo-

If the variables t, x, y, z are not explicitly in equation (1), it will
remain invariant in the case of random change in the origin of both time

t and coordinates x, y, z. Therefore, conditions (4) can always be

20



satisfied if one includes the transformation of the changes in the origin of

variables t, x, y, 2z in equation (3).

Let us now use the transformation of (3) under the condition (4) in

obtaining a spatially homogeneous initial function.

This will complete the formulation of a spatially homogeneous Cauchy
problem for equation (1). The initial function fo(x, y, z) must remain invariant
in the case of transformation (3), and obey condition (4). This requirement

leads to a functional equation for determining fo(x, ¥y, z):

fo[x(to! x!)’:zlall "'I'al))Y(tol X:)’:Z’bl, seey bm),

(5)
Z(tO: XyYs25C 5 veey C,l)]—‘-‘[’[[g’ JC,}’,Z,fO (xr}’az)-dly-"rd

e

where the random constants are functions of the parameters x and z_.

o’ Yo 0

The solution of this equation defines the spatially homogeneous initial
function. It follows that a spatially homogeneous Cauchy problem for equation
(1) exists if there is an invariant transformation for equation (1) which

satisfies condition (4) and if there is a solution of the functional equation

(5).

The solution of the spatially homogeneous Cauchy problems for equation (1)

will be called a spatially homogeneous solution.

Assume that we know the solution of the spatially homogeneous Cauchy
problem

f=f(t:XIY:z)- (6)

Then the solution of the spatially homogeneous Cauchy problem after the
transformation to the new variables t', x', y', z', and of the sought function

f', will have the same form, i.e.,
f’=f(t’,x’,y’,z’)- (7)

Applying the inverse transformation in the obtained solution (7) to the
old independent variable and sought function, we must, due to the uniqueness
of the Cauchy problem solution, obtain a solution for (6). It therefore follows

that the function f(t, x, y, z) must satisfy the following functional equation: /25

JIT(, S s vees SEph X, X, ¥, 2,815 cay @p),
Y(C’x’ylz7bl""lb ),Z(t,x,)’,Z,Cl, |.‘,C”)] = (8)

m

=d[t,x,y,2,f(t,x,y,2),d 13 e dq] .
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where T(t, s e, sk), X(t, x, v, =z, ajs e at), Y(t, X, ¥, Z, by eee, bm)

1’ 1?
and Z(t, x, y, 2, Clo sees cn) obey condition (4), and the random constants are

the functions of the parameters X5 Yy

spatially homogeneous Cauchy problem exists for equation (1), due to the unique-

and zo. It should be noted that if a

ness of the Cauchy problem solution transformation (3), which satisfies condi-

tion (4), it must be mutually unique.

In solving equation (8), the random dependence of constants on parameters

X Yy
0’ o
It can be shown that if the solution of equation (8) exists, it has the form

and Z5 is made more specific, due to the known existence of a solution.

f = ¥[t, x, v, z, T(t, x, ¥y, z)], where ¥ is randomly dependent only on the

variables T(t, x, y, z), where the following is valid for T(t, x, y, z):
T(tx,y,2) = o(t”,x",y",27) <(ty,x,y,2)= Ty = const,

where t', x', y', and z' are defined by equation (3).

Substituting the solution of equation (8) into equation (1) and requiring
the latter to be satisfied, we obtain an equation for determining the dependence

of the sought function on variable T with initial condition T = TO.

Thus, the spatially homogeneous Cauchy problem is reduced to the Cauchy

problem for some function dependent on only one variable.

This result, although presented for a homogeneous equation involving a
given function of three coordinates and time, can easily be applied to the

Boltzmann equation; this is done below in an examination of specific examples.

2, Consideration of Examples of Spatially Homogeneous Motions

The kinetic Boltzmann equation for the distribution function of molecular

velocities of a monatomic gas has the form [4]:

of of of o
a—t—+uﬁ+v(—;—y—+w5£=1(f): (9) /26

where x, vy, z are Cartesian coordinates; t is time, u, v, w are velocity

components, and J(f) is the collision integral.
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The gas particles interact with each other according to ¥ = %/rv.

Let us first consider the case when the distribution function f
depends only on one coordinate x, time t, and three velocity components

u, v, and w. Equation (9) will be written:
f ol _y¢f)
5F-+uax =J() (10)

Let us transform the sought function and variables
t’=tla; x'=x—X5; W=0au; Vi=av; W=aw; }

= an'

where x5, a, and Y are random constants. After the transformation,

(11)

equation (10) becomes

j{’ +u,g9_f7=I(f,)al+y+4(2~V)/(v—l).

During the transformation € the collision integral its property indicated

in reference [1] was applied:

. 4(2 - -
Tlu,v,w, fu,v,w) = Jlay, av,aw, f(au, av, aw)la (2-w/v=1 .

Assuming that l1+v+4(2-v)/(v-1) = 0, we find that in
transformation of (11) with y=(3v-7)/(v-1), equation (10) remains invariant.

If we further consider a to be a function of the parameter x., we can write

O
the functional relationship for the spatially homogeneous solution

f t, ;] k) 9 :
(t,x,u,v,w) fLt/ alxy), X=X, alx ), 6(xy)V, (xg)w] = aY(xf (L, X, 1,0, W

The solution of this equation has the form:

f“ exp(— Y)\x)gp[exp(_ XI)t,eXp(%x)u,eXP()‘-x)vyexp()‘x) wl,

where A is a random constant and @ is a random function of its arguments.

Let us note that a(x0)=exp(Xxo).

Substituting this solution into equation (10) we obtain
9 d¢ de de de
=+ M-y —T =L +U; -V Tw. ]~
i 1( YP—T o+ TN * 1'9v, ‘Lwlé‘w1 Jto), (12)
where -
T = exp(—rx)t; U= exp(rx)u;
V= exp(ix)y; w, =exp(rtjw,

i.e., we arrive at an equation for the funation ¢, now depandent only on four 127

independent variables: Ups Vi W play the role of new velocities and

1
the parameter T, which may be interpreted as time; the dependence on the

23



space coordinates disappears.

For equation (12), when T = O, one should assign the initial function

© = w(ul, Vi wl). This corresponds to the following initial function for f:

ftt=0, x,u, v, W) = g5 luexp(nrx),

(1
vexp(Ax),wexp(Ax)exp(—yarx). 3)
We calculate the initial density distributions n, velocities U, V, and
W, and temperature T corresponding to (13):

Ax

+ 00
n(t=0,x)=exp(~yax)[ff cpo(e“u, e v, e“w)dudvdw -

+ o0
= exp (= YA =30} fff o, ,w )du dv dw =1y expl-2x (y +3)];
U=Ujexp(—rx); W=W,exp(- 2rx);
Ve Vyexp(—2ax); T =T, exp(—22rx),
where ng, TO’ UO’ VO, Wgy are random constants, with ny and Ty positive.

This motion differs from the motion considered in references [1-31]

in that the density and temperature depend on the x coordinate.

Let us proceed to the formulation of a second example ot spatially

homogeneous gas motion.
Let the distribution function f depend on coordinate 2z, time t and

three velocity components, u, v, and w. The Boltzmann equation becomes:

of ,wel
o+ W - =I(f)-
3t 3z (14)
This equation allows an invariant transformation
t" =t; 2=z -2); U =ucos ¢+ Using; (15)
V'=—Usinp+Vcosg; W =w; f'=f,
where z, and ¢ are random constants.

Transformation (15) shifts the origin of the physical coordinate system

to point (0,0,zo) and rotates the coordinate system in velocity space

by the angle ¢ about the Ow axis. Assuming @ to be a function of the
Zg parameter, we can construct a functional equation for a spatially

homogeneous solution corresponding to transformation (15),
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ﬂt,z—‘zo,llcosp(zo)4-vsh19(lo)y—"510@(20)+
+Vcosq(z,),w] = f(t, Z, 4, 0, W)

Its solution has the form

f=f(t,ucoskz + vsinkz, —usinkz + vcoskz,w), (16)
where k is the random constant.

The dependence of ® on zZq is as follows: @ = kzo. Substi-

tuting function (16) into equation (14),we obtain

of + kw <v of _u1§£ ) = J(f), (17)

at ETTN vy

where y, .yucoskz+V sinkz; v,= ~usinkz +vcoskz.

The variables uj, vy, W play the role of new velocities and t is the time.

The dependence on the space coordinate z disappears. When t = O we can assign

an initial function for equation (17)
flt=0,u;,v W)= fo(ul,vl,w).

Let this initial function be such that

+ 0 + oo’

fff u, fdu,dv dw = const, and [ff v, fdu;dv,dw <0.
The initial distribution function when t = O will be

flt=0,u,v ,w) = fo(ucoskz+vsinkz,——usinkz+vcoskz,w).
Let us calculate the initial macroparameters: density, velocity components,

and temperature:

+ o0 o0 .
= [ f, dudvdw = }rff fo duydv,dw = ng = const;

-0 — o0

“U =Uycoskz; V=Ugsinkz; T=T = const,

where 400
1 .
u, - == fodu,dv, dw = const.

We shall now show that in the motion process the density remains constant.

Integrating equation (17) with respect to velocities u w between

1’ Vla
-® and +®, we obtain dnl/dt = 0, and consequently n = n; = ng.
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Multiplying equation (17) by w and integrating, we find that dW/dt = O

.
?

when taking the initial condition into account, this gives W = O.

Successively multiplying equation (17) by the collision invariants ul,
2 2 . . .
v (ul-U1)2+(v1-Vl) +w  and integrating between -® and +®, we obtain the

following moment equations:

u 300
1 _ Fko— jg v, widu, dv, dw = 0;

dt dT k 4 00 + oo
—dt—l— + 3;':1 [2[11 fif vy widu,dv dw—2V, fff wwfdn dvdw ] =
v, p *Fc 4o dip =0 0 —oco oo
i +ﬁ_0_—f£fulwfdul vydw =0;
. + o0 1 + o0
where u, -=E1—— fff wfdudy dw; V) = i J1f v, fduydv dw;
0 e -
2 2 2
om  tee (y=UD" + )= V) +w ]
T1=3xn0 jg 5 fdu,dv,dw;

# is the Boltzmann constant and m is the gas particle mass.

" The third equation, with the first two taken into account, gives

d RN
EF[TI e \11)]_0,

m o2 2 _m 2
'I"1+§-;(U1+V1)=T10 5-;[110, (18)

2 2 2
where T10 and Ulo are the T1 and U1 + V1 values when t = O. It can be

shown that
U=U,coskz+ V,sinkz; V= ~1,sinkz + Vycoskz; T=Ty.

. . 2
From these relationships it follows that U2+V2 = Uy +V12, i.e., the square

of the velocity modulus is a function only of time. Relationship (18) may

now be rewritten

9 2
3n n, mdl “+V 2) o Iy T + nom Uo )
no——2 T+ g "%y 9

This equation expresses the law of conservation of energy for a unit
volume of gas. The sum of the thermal energy of the gas and the kinetic
energy of the macroscopic motion per unit volume 1is a constant.

The motion is interesting in another respect. It enables one to
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determine the distribution function which is obtained as a solution when

t = o,

Let us introduce the H(t) function by means of the equation [5]:

+ o0
H(EY = fff f In fdu, dv, dw,

In order to obtain an equation which defines the behavior of H(t), we
multiply equation (17) by In(fe) and integrate with respect to the variables

and w between -« and +<., We then obtain

g *=
- = fff In(fe) J(f)du,dv,dw.

Y Vo

i‘t (19)

It is kn that
e Jif tn (fe ) J (f Ydu dv ,dw< 0.

Therefore H(t) is a nonincreasing function.

We shall show that H(t) has a lower limit and that the temperature T; = O,

for which we shall use the lemma proven in the work of Karleman [5, p. 27]:

Lemma. Let | be the positive distribution of mass and Y be some

continuous function.

Let us consider the class C of continuous functions ¢ 2 0, which satisfy

the conditions

[ odp = A;
a (20)

[ ¢v?dy <B,
Q

(21)
2
and let us assume that the function ¢, = ae‘aY exists, o > O, ¢y an element of
C is such that we have equality in (21). Then for all g in C, the
quantity H(gp) = g@ﬂn¢dpgfﬂwn) and the equality sign is valid only
if ¢ = @ in the region of the existence of u.

In our case we can take the following as the equality of type (2)
_Q?fduldvlﬁw =1,
From relationship (18), it follows that the temperature Z}l

T (D <Ty+ 2 Ug = Ty
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Therefore one can take B = 3%nO,T . The function Y should be taken in the
2

m
SRAURES + (v v,)2 vw?.3ag And
1 l ¢ o °

3
the function P is taken to be no(;n/2nn]§)2exp[—rnwgﬁb¢T2].

form

Then on the basis of the lemma, one can write

H(t) > H(ey) = const.
Thus we have established that H(t) has a lower 1imit. Since H(t) is non-
increasing, the following inequality is valid:

Let us introduce the function H(wl), constructed for
% 2
¢y = ot/ 2mxT ) exp(-my~/2xT ).
On the basis of the lemma, the following inequality must be fulfilled:

H(D) 2 Hg)) 2 Hlgg)e (23)

It follows from (22) and (23) ‘that H(t=O)ZH(¢1)ZH(¢O). Having conducted
calculations of H(@l) and H(qj) and substituting the inequalities into the

latter we find

(mn ] 2mexpl— 1 2H(t = 0)/3ng) < T () < T o

i.e., T, # O. If the initial function is the local Maxwell distri-
bution function, then the inequality (24) will acquire the following form

2
TOSTl(t)§T0+§m;U0’

i.e., the gas temperature cannot become lower than the initial

temperature.

Since H(t) is bounded below and is nonincreasing, then lim dH/dt = O.
Tt~

Therefore, from equation (19), it follows that

+ o0

-~ 00

The unique solution of this equation is a local Maxwell distribution function:

fo= no(m/2nnT )% exp {—ml(u = U, - v])2+w'~'1/2ﬂl;.

£32

The limits of the distribution function f when t - « must be function fz

therefore 1im df/dt=0. Hence

with some finite values U
1 to

v dT
v Yy an

l’
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it follows that equation (17), when t = =, will acquire the following form
J dJ
1--?-L— "15“{“ = 0.
cul Ul
This equation must satisfy the limiting distribution function f2 for u;, vy

and w values.

Substituting f2 into the equation and requiring that f2 be its solution,

we obtain u Vl - lel = O, Since this must be true for any ul and v1 values,
U = = P
1 V1 °

From equation (18) and the fact that when t = o, U, =V, =0, it follows

2
that Tl(m) =T, = To + (m/BK)Ub .

Thus, we found that the limiting distribution function in u, v, and w

has the form:
3
flte~, uy v, 1) = npan/ 27T ) 2 expl-mu? e v2 4+ w?),2xT,1,

i.e., when t ?* », the gas is transformed into a quiescent state with an

equilibrium distribution function and a temperature equal to T2.

3. DNumerical Calculations of Spatially Uniform Motion
on the Basis of a Model Kinetic Equation

For an approximate description of a gas flow whose distribution function
is close to the local Maxwell distribution function, a model equation may be

used instead of the Boltzmann equation [6].
For a second example of spatially uniform flow at v = 5 it has the form

af af
(;—t-—- - W 5;— = 1\H(f0 - f), (25)
where

[, =ntn/ 22T % explomlu—1U) 2r(w= V)" +w— W)’ 172:T I;

A = constant; n, T, U, V, W are defined through f from the known formulas.

The initial distribution function at t = O is

3,
=0 - L exp - - [(r—-Uycosz)® +
flt=0,u, v, w) n"<2mT0> { { T, 0 (26)
(- U,sinz)?+ wzl}.
As before, it can be shown that n = n,, W =0, .21 U%V? o  m U2 /33
3% 2 0 "3x 0

29



and when t-© the gas passes into a quiescent state with an equilibrium

distribution function.

Let us seek macroscopic velocities U and V in the form
U= alticosz; V= at)sinz, (27)
Substituting this macrovelocity distribution into equation (25) and inte-

grating the equation taking initial condition (26) into account, we obtain

2
dﬂnTb

- A 31
f=¢ n°t"0< m> exP{- ",1[ [(u—Uocos(z—wt))2+(v—
0

A
~An tt An,T o 2 "
i 2 w? *fe Any expl — x
~ Uy sin(z—wt)" +w ]} +e f 0(2%% LT 28)
2 H 2 2] d
x[(t—acos(z—wt+ we) +(v=asin(z—-wt+wT)) "+ W T,

where T(t) is expressed through.th% still random function a(t) by

0 In order to determine

mu
T(t) :T0+ T

the function a(t) there are two relationships which distribution (28) must

the expression "‘%}a%t)-

Convert into an identity.

+ o0 +oo
U= rTL 717 ufdudvdw; V= ?-1—1— Jff vidudvdw.

0 —x 0 -

Substituting here the macrovelocity distribution (27) and function (28) and

integrating we obtain a single coundition imposed on al(t):

—An t ¢
at) = Uy exp(—An, t—t22-/,T0 [ dm)+Ange *ofa) EXP{ Angt ~
0

2
95 2 ‘ mlo ma’z)
__—'—;1:—([—"1:) I:TOT 3% —~—:—)";-— d’f-

We reduce this equation to a dimensionless form, assuming a(t) = anl(tl),

t=t1H)/q) where L is the characteristic dimension of the nonuniformity in the

direction of the 0z axis:

¢
alul)ncqﬂwﬁl—ﬁﬁ)+ag'aﬁf)m@{~aul—r)— £?4
(1-a> ()
—a (<
~13E,____éﬁ_ni](tl—T)z}dT,
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where o = LM Kng[3T; 8 = 8710My 5 My = Ug(3mw/5x T, )"

K"o__= (8xTy /= m)l/’/LoAno.

The numerical solution of this equation was obtained by the iteration meth-
od on a "Strela'" computer. The computation results are shown in the

figure.

a,

075

05

025 L R
0 g2 04 06 08 t,

Changes in absolute velocity a

as a function of timej; ——==calculated by the model equation;
- - - calculated by the free molecular theory; — . — . cal-
culated by the Navier-Stokes equation; 1. 8 =1,

o =0,1; 9_p=1,oc::l;3-—f3==1,oc:=2;4—-{3=1,oc=5

&

For comparison, the figure also gives the solution of this problem
obtained by the Navier-Stokes equation. 4= 'l.f 6@?5&!7(13_ S
F 6Bty /30l /VB B+ exp [~2(1+6£ )¢, /3],
and 4 correspond to the following values of the parameters:
:l g = 1: o« = 13
s & =2; B=1, a =5

velocity modulus al(tl). The dashed curve represents the dependence a; (t;)

-e \LD

B= 1y, a =

Curves 1, 2,
1 and are the plots of the dimensionless

under free molecular flow conditions when B=1. It is apparent that curve 1

is close to the solution of the free molecular equation. An increase in

parameter ¢ with B remaining constant corresponds to a decrease in the

Knudsen number, i.e. transition to the conditions of a continuous medium;

however, at small t; values all curves approach the free molecular flow

solution and are tangent to it at tI:O. The curves behave this way because Z}S

of the choice of the local Maxwell function as the initial distribution:

this converts the collision integral to zero when tl=0. Continuity

the collision integral to remain small in some region of point t; = 0, and

the gas flow remains close to the free molecular flow. For B=1 and
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o = 5, a solution of the Navier-Stokes equation was constructed (dash-dot-dash
curve), which differs significantly everywhere from the corresponding solution
of the model equation (curve 4). This difference cannot be explained on

the basis of the well-known characteristics of the model equation, since

in the case being considered thermal conductivity is absent, Prandtl numbers
are not involved, and the hydrodynamic equation obtained from the model
equation by the Chapman-Enskog method coincides in the first approximation
with the Navier-Stokes equation. Apparently, this difference is caused by the
presence of ''the temporary initial layer" [7] in the solution of the kinetic
equation, in which the initial distribution function is converted to a function
of the Navier-Stokes approximation [6]. The figure shows that the shift of the
Navier-Stokes solution with time, equal in magnitude to the thickness of the

initial layer, leads to a good agreement of solutions.

This example verifies the presence of an initial layer in the solution

of the model equation.
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SOLUTION OF THE BOLTZMANN KINETIC EQUATION
FOR THE RELAXATION OF A GAS MIXTURE

Z, A, Rykov
T. I. Chukanova
let us consider the temporal behavior of a quiescent mixture of two gases 436
of different temperatures at the initial time t = O, with spatially uniform

distribution.

Physical considerations make it clear that when t > 0, heat transfer
from one gas to the other takes place and the temperature difference between

them begins to decrease.

This process of heating a cold gas by a hot gas will be investigated
on the basis of the Boltzmann kinetic equation. The state of the first gas
is described by a velocity distribution function of particles, f(t, :), and
that of the second gas by the velocity distribution function F(t, g), where

_'
c is the velocity vector.

We assume that the mixture is composed of absolutely hard smooth spheres

with diameter oy and mass ml for the first gas, and diameter O, and mass m,,

for the second gas. We assume ml < m, e

let the density and the temperature of the first gas be n, and TlO and
of the second gas be n, and TZO' The initial distribution functions for

each gas is taken to be Maxwellian, i.e.,

. - )

HBY 2 m]VQ
- = — exD l--— "ot
folt=0. V0=t ) " 201y,

-

3

(1)

m, % mgv?
Fo(t=0,V)=n2 S eNp |- ;

57—;7‘:120 | kT, |

where k is the Boltzmann constant and V is the velocity modulus.

With such a choice of initial distribution functions, the solution of
the Boltzmann kinetic equation will depend only on the velocity modulus V
and the time t. In this case, the quintuple collision integrals in the 4}7

Boltzmann equation are transformed to double integrals, as was done in [11].
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The transformed Boltzmann kinetic equations become

aft, V)
a9t —Ill(f:f)+112(f,F); (2)
aF(t
ELV) g, By s Ty F B,
where
v oy 2.y
Iy =2ner f 0 f  fh0ftty )4/5— *y Xydde
0 VV2-x?
2 of © 2 2 2V 1x?
P2 ol f (G, x)2xdx)  + 277 o) _f fct, x) v dx x
v
<7 ft, 02xdx - 2n Zo2f(t, V], Yo 3_\/‘I‘LXL d;
v 0

2 2 oo)
1+ 09 w2 My +tity
Iig= ( 5 > V(W;__j df [ fa, 0F(, y)[(r +V) -

Y,
Y,
2 My 9 2 \7
Y'-<)' +,~"2(x -V )>

lv,l y_l m, /q m] 2 o l/l
-~ V) txydydx+ [ | f(t,x)F(t,y)ﬁrz 2\y'+F(x -Vl x
1 fo

'( )'0

il 1

] txydydx - ,?f(t,x)F(t,y)(x+V—-

a0y,

xl l
< Veydydx + f [ fu, OFit, 2 nh Ixy dvdx}
V 1

. 2 3
(6—':3> 21, vy r Fit, y)‘v”) W'v—i—y«!— ydy:

4 1 /x »+y ~v?
[ Fit, OF, y) = S — xydydx +

[E- 3

o s | Lo 2
. "5(( F(t, v ufx) +2770; [ F(t, 0 Bv— dx x
; U
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I

o WVend=v-x®

e -l dx;
X ‘lf F(t,x)2xdx — 2= 0 “F(t, V)f F(t,x) 5V xdx; /38
2 9] o yzmz/m1
o0y \* g 2[ il 2) (LPF)
o (Fsf) = <~—7Z"“> v < ity g , m{ﬁnlf sy

%
x[’ll<y+(y2 "°(x v%) )—w—xqudyd“
My 1

'-cho F f(t,}’)F(t,x)(V+x—lV—xl)4xydydx+
0 yzm'z/m;
1, )’1’"2/’”1 m1
+ f f f(t,y)F(t,X)Zﬁl——y4xydydx+
|4 0 2

y oy ma/m m, [, m }
+ [ f(t,y)F(t,x),—r; (y +'—ﬁ(x -V )j 8xydydx
% Y, M, /m,

1

3 3
2 o0 v — V-
_ <ﬁ‘_1iﬁ‘_°) on?F (L, V) f f<t,y)(”—“l—3“vl”“l‘“ ydys
2 0
where

mo—my m2+m1 . my o ]

1=m2+mTV’ x2=m—m1 ’ [ v x)] !
. 1

L= MW= (Venm /g5y, = 5 (VX4 (V= m, [yl

In order to determine the distribution functions f(t,V) and F(t,V),
it is necessary to solve the Cauchy problem for the system of equations (2)

with initial conditions (1).
Below we will give a numerical solution for this problem.

Let us first note certain properties of the solution to be found which

can be established prior to solving the problem.

From the conservation equations it follows that in the relaxation pro-
cess the densities of the number of particles, nl, n2 and the sum of the gas
temperatures, T1 + Ty, will remain constant.
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It follows from the Boltzmann H-theorem that when t = o, the distribution

functions f and F become [2]:

iy, \ m V2 /39
P\ Gmer ) P\~ @t )’

m, 3/’ m,V 2>
Fan, kT expi — T )’

)/2 is the temperature of the mixture at equilibrium.

where Tm=(T10+T20

It is apparent that when t-¥
T, () > T, and T,0-T,.
The above indicated properties were used for controlling the count.

In finding the numerical solution of the equations, it is convenient

to convert to dimensionless variables by means of the following equations

b=, t"; V=c,V5

Y, %
ml 2 " _ —__m2 4
f“"x<m:> s F*"z(ﬁ?rj £

where t', V', f', and F' are dimensionless quantities and their coefficients
are characteristic scaling factors; Tl was selected to equal the average
time between successive collisions of particles of type-one gas when the

mixture is at equilibrium:
y 2 hi-1
1{ my \” 2 o1 +09\" (M) +My .
T, = — 1110'1+n2 3 '
17 4\nkT,, 2m,
C . =

2 (3kTwﬁWQ is the mean thermal velocity of gas particles of the second

type when t=c,

The first time step, allowing movement away from the initial

distribution functions, is carried out using the Euler method:
[7(at" V) = f3CV) + T s F)aY + 11,05 » Fg dat’s
F/(at, V) =Fy (V') +],,(Fg , B )at+], (Fg ,f)at".
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Subsequently computations are by the modified Euler formula:

P o V) = (0 s VO Ty U7 (8, V), £, VI 248+
+ I U7t V)5 P, V)28t s
FALL, V) = FPCEf V) Ty LR (8, V7)), F (8, V12087

H] [P (5, VO £7CE V1287

The double integral is evaluated by repeated computation of single integrals.

The latter were evaluated by the trapezium method. /40

From the found values of the f' and F' distribution functions, the dimen-

sionless temperatures Tl' and Tz' were calculated by formulas

T;

N 3 oo 3/2 o0 4
N 3 VA et gy ’=w_3> Voave
=k1-u(n—~—> -QE Of,f V dV ’ T2 47 o ({ F V

(T,-T,T,, T, =T_T;)

These calculations were conducted on the BESM-6 electronic digital
computer at the Computer Center of the Academy of Sciences of the USSR.
A mixture consisting of methane and argon was taken for specific calcu-

lations.

The type-one gas was methane, the type-two gas argon. The initial

argon temperature was 10,000°K, while that of methane was 300°K.

The gas densities were

18 -3
nlxnfl() cu .

At equilibrium the mean time between the collisions of methane particles
was found to be TlgD.34x10_9 sec. The solid curve in Figure 1 shows the
uniform increase in methane temperature T' resulting from its heating by

argon.

After a period equivalent to seven collision times, the methane

temperature differs from the equilibrium value by only 9%,

i.e. one can say that in this example the temperature relaxation time is
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of the order of 7-8 collisions.

Figure 2 shows graphs of the f'V'2 function for various times. The sub-

script on the function designates the time to which the curve refers.

Figure 3 shows the changes in the F'V'2 function for argon. The
solution obtained for the problem 2llows a certain evaluation of the accuracy

of the approximate method for solving the Boltzmann kinetic equation.

The problem of the relaxation of a mixture of gases was solved in
[3, 4] by the statistical Monte Carlo method, in which the motion of a /h1
large number of molecules is observed simultaneously. The essence of that

method has been described in detail in the indicated references.

1

Figure 1. Graph representing temperature increase
of methane T' as a function of time.

Our calculations were made for the same specific

gases and with the same initial distribution functions as in [3, &].
Their results were recalculated to our dimensionless variables and plotted
for various time intervals as circles and x's in Figure 1. The x's apply

to data in [3], while the circles represent the data in [4].

The graph shows that the results obtained by the authors
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of [3, 4] differ from the precise solution by an average of 30%.

Comparing the results in [3] and [4] over a range of methane temperatures
shows poor agreement. In [3] a periodic, nonuniform increase in methane tempera-

ture was discovered. This is absent in the solution which we obtained.

Remarks. 1In the discussion with one of the authors of references [3, 4],
Yu. G. Malama, it was found that in these articles the densities of argon and

18 -3

methane gases were erroneously given as 10 cm ~. The correct values are

0.5 x 1018 cm_3. This leads to changes in the time scale by a factor of two.

For comparison of the data of [4] with our results with respect to the methane
temperatures and taking into account the above-mentioned discrepancy, it is

necessary to reduce the abscissa of the circles in Figure 1 by a factor of two. 1#3

Such a comparison yields satisfactory agreement of results.

{v*
05
Ji2
M -
v
2y
v
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0 1 2 v

2
Figure 2. Graphs of the fV function for different
times. The subscripts on the functions designate the
time to which each curve refers.
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2
Dependence of the FV function on the magnitude

Figure 3.
The subscripts on the function F designate

of V for argon.
the times to which each curve refers (tl =0, t =2,
‘tl.':lk,tl:m). 1
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A METHOD FOR DIRECT NUMERICAL INTEGRATION
OF THE BOLTZMANN EQUATION

F. G. Cheremisin

1. Principal Difficulties in Numerical Solution
of the Boltzmann Equation

A rigorous formulation of problems in the flow of rarefied gases is 1&5

provided by the Boltzmann kinetic equation, which permits description of
significant changes in flow properties at distances on the order of the mean
free path or during a time comparable to the mean time between molecular

collisions.

The Boltzmann equation introduces a molecular velocity distribution
function f(g,;,t), which is determined in the so-called ''phase space! of a
molecule (3,?) and it is also time dependent. The hydrodynamic character-
istics of flow (density, average velocity, temperature, momentum
and energy fluxes ) are all determined from the found distribution function

as the corresponding means over velocity subspace.

As in ordinary hydrodynamics, these quantities sufficiently well
characterize the flow, and their determination is of fundamental

interest.

The uniqueness and the difficulty of the problem, however, lies in
the fact that it is not possible to construct a closed system of equations
for the hydrodynamic quantities, and their determination requires the
preliminary calculation of the distribution function, i.e., it requires
a significantly more detailed description. After such a description is
achieved (the distribution function is found), "excess' information is
eliminated by calculating the corresponding mean quantities.

Naturally, one attempts to formulate numerical solution of the
Boltzmann equation in such a manner that it contains a minimum amount of

excess information at the distribution function level. The desired distri-

bution function f must satisfy the following requirements: /k6
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Py, (f —fdel <e;s
- e o ’, (1)
ey, (f=fMEL <&
. . . . . 2 g 2
where f is the precise value of the distribution function; Yi= 11, §, § E
are molecular collision invariants;the parameters ei, ei' stipulate

the required accuracy in calculating the hydrodynamic quantities.

Inequalities (1) determine how close, on the average, the computed
distribution function is to the true value. These conditions can be satisfied
simultaneously if the distribution functions are computed at each
point in physical space (;, t) with statistical accuracy, i.e., so that
the computed values contain the statistical error €o, randomly distributed

around eo =2 O.

The accurate calculation of the distribution function at each point
in phase space requires a tremendous number of operations, due to the
necessity of solving five-fold quadratures in the collision integral.

The sufficiency requirements on the average allow the calculations to be
carried out with only statistical accuracy and significantly reduce the

number of necessary calculations.

The second principal difficulty, also associated with the necessity
of detailed description, is the sharp increase in the necessary machine
memory. In even the simplest one-dimensional steady-state gas motions,
the problem at the distribution function level becomes at least
three-dimensional, and the magnitude of the distribution function as a rule

changes significantly over all three variables.

Evaluations show that in order to store data on the distribution functions
at the necessary number of points in phase space, the operational memory

of a modern electronic digital computer is insufficient.

2. Scheme for Integral Iterations

Let us construct an algorithm involving successive iterations of the

Boltzmann equation which does not require storage of each step of the new
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distribution function.

The Boltzmann equation may be written in the form

of 29 ... N
PRSI R (2)

v o [ B0, B, EDf) duwdE

=L B0, E, 8 [] dudg,

where [, = f(él): "= f(g');du>‘ sinodode ; g~ = é'(e.e

and 0 and ¢ are collision parameters.

- - - .

l‘z"c’l); Fl;ﬁ;(e, ¥y E,

In equation (2) the collision integral is in two parts, the first of
which, Vf, describes the decrease in the distribution function as a result
of collisions of an isolated group of molecules with all others, the second
part of the integral, on the right, gives the increase in the number
of molecules in the selected element of phase volume resulting from
molecular collisions in all the remaining space. Strictly speaking,
such a subdivision of the Boltzmann integral is admissible only when
molecular interacting has a finitie radius. The rapid decrease of the
intermolecular potential for neutral gases with distance justifies
limiting of the interaction radius. During numerical integration
the limitation of the region of changes of the impact parameter
(with subsequent testing of the insignificance of such limitations) is

necessary.

The following iteration method for the solution of equation (2)

appears desirable:

af (M o f(") (a=1) (n) (a—1)
t g v f =N ’
at ax (3)
where
(n--1) 1 (n—1) -
v ~;f Bfl du)dgl;
-1 (=1 =D
N BT Y €
etc.

k5
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The convergence of this process, which was used for proving the theorem
of existence of solutions for the Boltzmann equation, was established only
for spatially homogeneous flow and for "sufficiently small" t - ty values,
where t; is the initial moment of time in the general case. However, one 148
would expect convergence to take place at any t - tp values, at least

if the zero approximation has been selected successfully.

Integrating (3), we obtain

(n) A
f (Y,,X t)“‘f('—,)tort Yexpa—[ v . (E’xl’tl)dtl +
t, (4)
(r-1) > -~ ENCE I
. fN n (ﬁ) T,T)C‘\P{—f v(ﬂ I)(E,xlitl)dtI]dT’
t, T
where }1=§_€(t—fﬂ; ﬁ):x" Yt—tﬁ; }T=§—iﬂt—1);
(n—l)(g, ot ):;_x fo(n_l)(El’xl’t )dwdgl, (5)

(n—1) (n—1) (n-1)

NPT L= L BT R Lo T (B i eedEy. ()

1 (na1) . > -
n turn f (z—,,fl,t-l)=f(51’x017t01)"

L —~ 9
% exp{ —f v(n )( El,xz,t YAty + ey

Lo

(7)

S >

where y, - ¥; =B (ty=ly)i Fo1= X1 = E1(t = Loq)se etc.

From this we see that the solution of equations (4)-(7) is written

in a form which allows introduction of both initial and boundary conditions.

If one considers the problem with initial condition t = t5, then

f(g) ;o,to)*q)(g;;— g(t_to))ﬁ

For a problem with the assigned function at the boundary, one must assume
- BY
lx - x|
3 > 5> s
f(E,,xo,to)"(P Ej)xsit_—l__,—‘ 1 4
£|
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wheri ;s is the intersection of the ray drawn from point R in the direction

of - with the boundary surface. One can also have a mixed problem, when

the distribution function is stipulated on certain surfaces and at certain
specified initial moments of time. In this case the initial data can be re- /49
ferred to t = O, and one can consider f(g,;o,to) to be a function stipulated

on the boundary or an initial value, depending on whether the characteristic
originating at point x in the —g direction intersects the boundary surface

at t > O or enters the region of initial data at t = O.

Let us assume that the (n-1)t iteration has been performed and f(n-l)

is a known function. Let us seek f(“)(g;; t) at a designated phase p01nt

(E x) at time t. For this purpose it is necessary to calculate V(n 1)(6
(n 1)(tg,x t) at a number of points (t ,; ), where ;; = ; - §(t-t1). Let

us calculate these integrals at each point (tl,;Z) by random sampling. For

this purpose we shall take a set of random numbers (§ ,8 ,€ ), calculate

1

(§l, 1'€ ) for each, calculate the values g for each assigned value g 'and 53
and then find the corresponding values of f(n 1)(§ tl), (n l)(g ,;;,T)
and fl(n 1)(§ ,;' T). Integrals (5) aﬂ? (6) are the sums
of the integrands at different points (gl, , €)e In turn the
values of f(n—l) at the required points (§ ,;1 t.), (g xT ,T) and (5 —;,T)
must be calculated in the same manner from the f](11 2)(32, Xg tz) values
etc.

Figure 1. The sequential approximations scheme.
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The calculation scheme is represented in Figure 1; the points at
which the successive iterations must be computed are indicated. One can
preliminarily sample (from top to bottom) a sequence of random numbers ‘450
which characterizes each apex of the diagram, and then carry out successive
iterations (from bottom to top). However, storing all the sets of
random numbers is no less difficult a problem than storing the distri-

bution functions.

Let us join each three apices connected in Figure 1 by dashed lines into a

single apex An The obtained "graph,'" known as a '"tree"

-1 Ppepreeee

(Figure 2), is characteristic in that each of its apexes Ak 1 is determined

only by a single preceding Ak. This situation plays an important role, since
storage of the whole tree in the memory in advance is not necessary, but only a

single branch represented in Figure 2.

Figure 2. Iteration tree for the Boltzmann equation.

For the assigned value of the root A , consider the random numbers
which define one of the apexes An-l; for this apex define one of the

apexes An etc., until A  is reached; take only as many values of Ao as

-2’ . 1)

are necessary for the calculation of f at apex A Then, changing

1°
the value of the random vector which defines Al, and taking a new set of

(1)

Ao’ calculate the values of f at the new apex Al'. Repeat this process
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until enough values of f(l) at apexes Al’ Al', eee, have been acquired to

(2)

calculate the second iteration f at one of the apexes Az; then similarly

(2)

calculate f in apex A_', etc., until A.n is reached.

2
It can easily be shown that memory space problems do not arise in Zﬁl

practice for any number of iterations ("generations' of the tree, Figure 2),

since the zero iteration can always be stipulated in analytical form.

However, the volume of calculations avalanches with each new iteration. A

significant reduction in calculations can be achieved by using statistical

considerations, similar to those which were expressed in Section 1 of

this chapter, in conducting subsequent iterations.

Requirements similar to (1) must be imposed for integrals containing

f(n-l) and which enter into the definition of f(n). It is important to

- -+
note that smoothing of f(n 1) occurs not only at each point (x,t), but

also along the characteristic.

In carrying out n iterations, n-1 levels arise, each of which results
in the smoothing of the previous iteration. Finally, the obtained

(n)

function of f is integrated for obtaining the hydrodynamic quantities.

This computation method may be used for finding accurate f(n) values
at a small number of phase points (construction of distribution
function profiles, etc.). In this case f(n) is calculated through
f(n—l) over a sufficiently large number of sets of random
numbers, and all previous iterations are performed as described
above. The best calculation conditions are chosen and calculations are

checked by changing the number of trials in each generation of the iteration

tree.

3. Stochastic Boundary Conditions

In Section 2 we considered the problem with assigned initial or boundary
functions. In calculating the hydrodynamic flow of rarefied gas around
various bodies, the so-called stochastic boundary condition is frequently
used; this describes the incident and the reflected flow of molecules

from a surface element:
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[ Gxat= f KEDGI,0d0,
2aR)> 0 (R+2) <0 (8)

- .,
where n is the external normal to the surface element., The scattering
- -
nucleus K(€,7) characterizes the properties of the reflecting surface and /52

may contain such parameters as temperature and avarage velocity, describing

the surface state, and also various accommodation coefficients, which
characterize its structure. One can take into account the partial accommodation
of incident molecules if one assumes that the fraction o of the incident

beam undergoes mirror reflection, while the remainder leaves the wall with a
Maxwellian distribution corresponding to some new values of mean

temperature and mean velocity. In this case [1]:

> 5> > - foem -i)2
KCE, M) = aslGi-8) 4Gl ml s (1—a) P20 o (B=w)7 L
2%]0 2T0

where §(y) is the delta function.

Boundary condition (8) may be included in the scheme of Section 2 by

-’
isolating the cone of influence of the body () at the point (x, t) (Figure 3).

B AN A

Figure 3. Calculation scheme for stochastic boundary condition.



The conditions at infinity may be replaced in practical calculations
> 5 -+
by assigning boundary conditions f(§,xz,t)=fm(§,t) on some limiting surface

>. We obtain

(n) (n—-1)

T O T ’ 22
”f (g)x,t)nf n (g,xs,t)exp _f v (g,xl’tl)dtl + see ; (9)
EEQ to
/53
E ind ¢ >3
. f(”)(ﬁ;l’,t)=fm( E;tOI)eXP “f V(n_D(E;xlrt‘l)dtl}'i'n. . (10)
iga to

Substituting into equation (9) the value
(n) » = s s (1)
i }f (B, %,t,) = LS KE TG, E
(5+1)>0 (n+2)<o0 (11)

-
For simplicity we can consider that T&Q (this is always valid for convex

(n) ﬁ - . . .
surfaces). Then f ( ,xs,to) can be described by formula (10), in which
4 353 7 o

one should replace £ * T, x Xg t to.

We shall obtain
(n) = » L (=1 > » Qe
, B, x,t)=expl—f v (E,vxlytl)dtl }fK(E,T])X

g€ Q t, (12)

‘l
[}

D 4. t (n=1)> >, ., » 5’
Al s tgdexpg—f v (ML + o fdn+ o [

v . (n) 2 2
Formulas (10) and (12) express the function f € ,x,t) at any values of
iy
the vector € through the values of the distribution function at the outer
boundary and the (n-1)t approximation. Relationships, analogous to (9)-

(n-l), f(n—2)

(12), must be written for f yesey €tc.

-
Each step during additional integration for 1| in (12) increases the
2 _
gymber of calculations for §€ Q by as many values as the required

T number for calculation of the integral containing the kernel K(E, T). An

exception is the case of pure mirror reflection: here a single vector
-p
corresponds to one 1T value and there is no significant increase in the

volume of calculations.
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Figure 3 explains the calculation scheme for stochastic boundary
conditions on the body. It is obvious that the construction of one tree
with a root at the assigned point (§,§ t) and EE:O requires additional

construction of several trees, having a common root at the point 2 (§ t).
This, apparently, is valid for each apex (§ ,;1 t.) of the initial tree,

-» -+
and also for the apexes of the trees which orlglnate at points X if Ei« Q.

As in the case of assigned boundaries or initial functions, memory /54

problems do not arise when using stochastic boundary conditions.

4. Choosing the Zero Approximation

Since an increase in the number of iterations leads to a significant in-
crease in the volume of calculations, the apt choice of the zero

approximation is important.

If the flow of gas is close to the hydrodynamic limit (Kn<1),

the Maxwell distribution function may be selected as the zero approximation:

% m(E -0,y
f =N _m‘> ex —— 70 R
070 17 2T, (13)

- -» <> 9

The parameters n (x,t), To(x,t), vo(x,t) which enter into equation (13)

must be determined a priori from the hydrodynamic equations. Then integrals
v(o) and N(O) can be expressed as functions of n,, TO’ :O and g. The
calculation of the first iteration will require a significantly smaller
number of elementary operations. Since a large proportion of the calcula-
tions are made in the first iteration, this will significantly

reduce the total volume of calculations. In the case of large Knudsen

numbers, the free molecular solution can be used as the zero approximation:
<> > -»
f(g;—x'y t) = CP(E; x—g(t- tO)’ tO ).
In the intermediate region, one of the '"rough'" solutions of the Boltzmann
equation can be used (for example, the Mott-Smith solution for shock waves)
or the solution of the corresponding problem of the so-called 'relaxation"

kinetic equation, in which the Boltzmann integral is replaced by a simplified

52
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expression I=- v, (n, T, J)(f_ fo)e

The relaxation equation may also be used in order to reduce the volume of
calculations for conducting the first iteration by the above method. Then,

if we consider the values no(;c.,t), TO(:_c’,t), w_f.o(—x’,t) in the zero approximation

to be stipulated we obtain 455

(> s s . :
f ' (Esx,t) = f(&,xo, toiexp{ —f vrdt1 +
t

[}

¢ . t
+ [y, fo(E,,x,c,'r)exp{—f v dt hde.
T

tO

We can then proceed with the calculation of f ), etc., now

(—0 - ‘
2 gn—2’xn-2’ n-2
according to the precise Boltzmann equation.

5. Solution of the Problem
of Homogeneous Gas Relaxation

As an example of application of the above considerations, we shall cite a

solution of the problem of the homogeneous relaxation of gas consisting of solid

elastic spheres (Cauchy problem for the Boltzmann equation).

The Boltzmann equation is written in the form [2]

If(E,t)
3t = I (14)
I(f] 0’2 oo n ’ ’ » ’ ’ ’
=3 ﬂT f f({(trg }‘\:g)f(t:gl)'ﬂl: gi)—

—e 0 0

(15)
_f([: £, M, C)f(tygl) UEY) gl N |51|Sin0dOdq‘/dE]dn]d§] >

-+ -+
where £, T, C, §l, nl’ l;l,... are components ot the vectors g, i1 eee3

E =g1lg; n = nemg; L= +ngs
Ey=t-lg  wi=n-mg €, = g-ng (16)
q = I(El~f’;)+m(nl =)+ = ¢

l «cos6 m= sin0cosy; # = sin®sing .
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When t = O the initial value is stipulated for equation (14):
- -
f(£,0) = ¢, (E). (17)

Let us introduce the characteristic parameters: density np, temperature

TO, distance xg = l/nomjz, velocity vq =/kT 7m, time T = xo/vo, and transform
in equations (14)-{17) to the dimensionless variables and the dimensionless
function £* = f/novo_3 (hereafter, "*" will be omitted). Let

us consider two different values of the initial function:
Y .2 2
1 2 1 : g e
E) = —- ————Jexp{ - 2 =T ,
ﬁ’o( ) (27»T1(0)> <271T;0)) { <2T§0) 2T;0)> (18)

noting that (0) ,(0)
T, /T2 e 2

/56

. T(0)+2T(O)
2 2 2 -
e S e it

% 2 2
, 1 1 ) (E~1° +p
o (5) = E(z‘ﬁ?> o 2T, ¥

2, 2 (19)
+ exp {— (iil_)mff___} y Ty=2/3.

Condition (18) designates the nonequilibrium initial state of the
gas, in which the energy is nonuniformly distributed over the successive
degrees of freedom of the molecules. With time, smoothing of the temperatures

must occur, T, 1 and T, * 1, and the distribution function must approach the

Maxwell equilibrium value.

Condition (19) represents the so-called ''pseudojump'. problem;
attempts to solve it are given in reference [3], for example. This initial
condition is convenient for the study of the evolution of the distribution
function, since at t=0, it differs significantly from the Maxwell distribu-
tion function. Condition (19), 1like (18), corresponds to the Maxwell

equilibrium distribution function, with T =1 and n_ = n, = L.
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The deviation from equilibrium may be characterized by the quantity
’1‘1-1=AT1 or T2-1=AT2.
The results of three iterations for the initial value of (18) are

shown in Figures 4, 5 and Table 1.

Curves 1, 2 and 3 in Figure & represent the results of one, two and
three iterations, respectively, from the '"zero" approximation
-»
roac{)o(g)} [“O;

" Y/ g2 4 2
» 1 \”2 5 P .
%::h(ﬁ)“(g;) EXpy—~ T t>0

The dashed curve gives the solution of the corresponding relaxation equation

(7[ o __f )
AL (20) /57

where Vr = nT/u .

The dependence of W(T) for the considered model of solid elastic

spheres is given in reference [4], for example.

In order to determine how close the results of three iterations are to the

final solution of the problem, two iterations of the Boltzmann equation were used
in solving the relaxation equation (20), used here as a 'zero" approximation,

The results of the comparison are given in Figure 5.

Curve 4 is obtained after two iterations for solving the relaxation

equation. A small divergence of the curves is observed when t/7T is

close to one, when the ATl value itself is small and the relaxation

has basically terminated. This difference does not exceed 3%

of the equilibrium temperature value.

Let us note that the characteristic time T which we use
here is not equal to the average time between collisions Tor introduced in

reference [4]:

Tty 22,%6 .

Table 1, which gives the density and temperature values, calculated

by three iterations (n,T), and also by two iterations in solving the
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relaxation equation (n',T'), is used in checking the calculations. In the
problem considered, n=1 and T=1 for all values of t=0, in view of the
conservation laws. According to Table 1, the standard deviation does not

exceed 0.5% for density and 1% for temperature.

Iable 1

t/ < | n n’ T T

0,10 0,997 0,998 0,989 0,989
0,25 0,898 0,997 0,988 0,936
0,40 1,008 0,992 1,002 0,992
0,55 1,007 1,016 0,995 1,008
0,70 1,017 1,002 1,008 0,999
0,85 1,000 1,014 1,005 1,008
1,00 1,000 1,015 0,996 1,005
1,15 1,003 1,013 0,998 1,007
1,30 1,010 1,007 0,998 1,001
1,45 0,998 1,009 0,991 1,003

Commas represent decimal points.

Figures 6 and 7, and Table 2, show corresponding results for the initial
value of (19).

/58
aT, -

0.4

02

0 iy T e ' &
Figure 4. Solution of homogeneous relaxation problem (initial

condition (18)): 1--first iteration; 2--second iterationj; 3--third
iteration; - - - - solution of the relaxation equation.

56



aTh
[
[
02
4
3
%
—m—o -
T
o T TTas T o L

Figure 5: Comparison of iterations (initial condition (18)):
3—-third iteration; 4--second iteration of the solution of the

relaxation equation.

159
AT
0.6
0.4
02
2 —
0¥
10 ¢
Figure 6: Solution of homogeneous relaxation problem (initial condition
(19)): 1--first iteration; 2--second iteration; 3--third iterationj
- - - - solution of relaxation equation.
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Figure 7. Comparison of iterations (initial condition (19)):
3--third iteration; 4--second iteration of the solution of the

relaxation equation.

In carrying out the calculations, the time steps were taken equal to /60

0.05T. The hydrodynamic quantities were calculated by the trapezium method

from 250 approximate distribution function values. In calculating

-’
f(3)(§,t) when t<T,, ten combinations were taken at each point t =t;
_’

these combinations determine the values of the random vectors (g ,5, l

2 -
which are the arguments of f( )(g,tl), (N1=10).

- -
Corresponding f(z)(§ , t1) values  were calculated through f(l)(g,tz)

._’
from five combinations at each point t =t (N2=5). The function f(l)(gl,tz)

is expressed analytically, using f(o)( , tz).
Table 2
= n n T T
0,10 0,998 1,000 0,996 | " 0,998
0,25 1,028 1,020 1,049 1,034
0,40 1,013 0,088 1,021 0,990
0,55 1,008 0,988 1,003 1,007
0,70 1,006 1,013 1,013 1,020
0,85 1,004 1,025 1,004 1,027
1,00 1,006 1,014 1,008 1,018
1,15 1,010 1,019 1,004 1,019
1,30 1,005 1,007 1,001 1,002
1,15 1,003 1,008 0,998 1,005

58 Commas represent decimal points.



When t > To» the number of trials was taken to be Nl = 5 and N2 = 3.
The complete calculation for three iterations required approximately five

hours on a BESM-6 computer.

In calculating ATl and AT% in the second iteration approximation (curve
2 in Figures 4 and 6), the f(z value was calculated using

thirty trials at each tl = t point. Complete computation took approximately
twenty minutes.

Figure 8 represents evolution of the distribution function for the
pseudojump problem (profile of distribution function f(3)(g, 0, t)).
The dashed curve represents the distribution function values.

Figure 9, as a comparison, shows the distribution function
profiles in the third iteration approximation f(j), in the
first approximation f(l), and the solution of the relaxation equation fr”
for t = 0.25 T. Figure 9 explains the positions of the curves in Figure 6.
Similar results from distribution function calculations are shown

in Table 3. The comparison of the f(j) and fr(z) distribution functions

obtained from the solution of the relaxation equation after two iterations,

shows that the iteration approaches the solution of the Boltzmann equation

with great accuracy.

ﬂ&&&ﬁ

0,06

004

R
oW

Figure 8. Evolution of the distribution function in pseudojump problem.
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02

Figure 9. Comparison of distribui:,ion function profiles
at the time t = 0.25 T: £(1)_ first iteration; f,. - solution
of relaxation equation; .f3 - third iteration.

Table 3

{=0,25

t=0,5 =1 [=1,5 =3

(3) 2 3 2
f )r§ ) f(3) ff.Z) f(s) fr(2) f( ) ffz) f(B)

Ut

(2
I

0,0558| 0,0541] 0,0593| C,0578| 0,0608 | 0,6612 | 0,0622 | 0,0611 | 0,0
0,0565| 0,0576| 0,6578| 0,0583| 0,08601 | 0,0605 | 0,0611 | 0,0811 | 0,06
0,0577| 0,0573| 0,0580| 0,0586/ 0,0574 | 0,0577 | 0,0597 | 0,0583 | 0,0
0,0567| 0,0586| 0,0553| 0,0566/ 06,0561 | 0,0580 | 0,0541 | 0,0540 | 0,0
0,0579( 0,0569| 0,0535| 0,0540| 06,0488 | 0,0508 | 0,0483 | 0,0485 | 0,0465
0,0538] 0,0477|0,0486| 0,0497| 0,0442 | 0,0455 | 06,6409 | 0,0409 | 0,0388
0,0502| 6,0497|0,0451 | 0,0431|0,06370 | 0,0379 | 0,0331 | 0,0336 | 0,0310
0,0440| 0,0436/0,0365|0,0386|0,0209 | 0,0289 | 0,0283 | 0,0278 | 0,0240
0,0362| 0,0353/0,0298{ 0,0292|0,0225 | 60,0232 | 0,015 | 06,0185 | 0,0178
0,0276| 0,0281]0,0220{0,0231{0,06169 | 0,0162 | 06,0138 | 0,0146 | 0,0127
0,0200{0,0237/0,0173]0,0160/0,0117 | 0,0115 | 0,0086 | 0,0100 |0,0086
0,0138/0,0144/0,0110{0,0108]0,0077 |{ 0,06078 | 0,0052 | 60,0064 | 0,0057
0,0086) 0,0085/0,6072|0,0074|0,0048 | 60,0048 | 0,0039 | 0,0040 | 0,0036
0,0063|0,00600,0042|0,0044{0,0027 | 0,0029 | 0,0024 |0,0024 |0,0022
0,0035| 0,0035{0,0024 | 06,0022|0,0016 | 0,0018 | 0,0013 {0,0014 | 0,0013
0,0018|0,0018{0,0014{0,0014}0,0009 { 0,0008 | 0,0008 |0,0008 |0,0007
0,0011/0,0008{0,0007|0,0007|0,0005 | 0,0005 | 0,0004 | 0,0004 | 0,0004
0,0005(0,0005{0,000310,0003!0,0002 | 0,0002 | 0,0002 |0,0002 | 0,0002
0,0002/0,0002|0,0002{0,0002|0,0001 | 0,0001 | 0,0001 |0,0001 | 0,0001
0,0001 10,0001 {0,0001 10,0001 | 0,00008 0,000085| 0,00005! 0,00005! 0,00005

-
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Commas represent decimal points.

0,0634
0,0623
0,0588
0,0533
0,0465
0,0388
6,0313
0,0241
0,0178
0,0127
0,0087
0,0057
0,0036
0,0022
0,0013
0,0007
0,0004
0,0002
06,0001
0,00005
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(4]

0,10
0,25
0,40
0,35
0,70
0,85
1,00
1,15
1,30
1,45

t/z] «
0,10
0,25
0,40
0,55
0,70
0,85
1,00
1,18
1,30
1,45

Xy

5,484

54,760

4,28

3,355
3,539
3,338
3,193
3,073
3,018

2,878

14,51
14,82
14,95
14,71
14,79
14,77
14,83
14,62
14,57

14,51

5,499
4,940
4,328
3,857
3,848
3,383
3,283
3,129
3,061
3,005

=3 4

5,481
4,756
4,251
3,873
3,583
3,385
3,280
3,203
3,134
3,076

14,92
14,73
14,87
14,92
14,78
14,83
14,78
14,81
14,70
14,70

’

%y

,

,r

14,87104,3(104,4 [104,5 |014,8
14,781102,8101,7|102,5|893,4
14,70102,3 |101,91100,9|871,2
14,85 99,56 |101,0 |99,74 |835,3
14,61 |98,72 (93,50 |©8,83 |813,4
14,57/98,43 |99,33 |98,13 |807,6
14,55 97,37 |88,91 |97,60|798,7
14,53 [97,11 {8,97|97,18{793,1
14,52 | 98,57 |97,83 |98,89(787,3
14,51 188,21197,88 198,651784,0

,s

5,509 |5,625
4,962 |4,977
4,314 4,483
4,024 |4,108
3,708 (3,319
3,502 |3,599
3,418 {3,432
3,245 (3,304
3,153 |3,206
3,07913,132

Ba By &
5,681 (2,568 {2,572 |2,461 |1,073
5,024 |2,609 |2,879 2,784 [1,061
4,521 |3,195 {3,205 {3,040 |1,087
4,137 {3,275 (3,457 {3,231 {1,027
3,844 (3,592 |3,517 |3,377|1,017
3,620 (3,701 3,875 [3,488|1,009
3,450 (8,734 (3,726 |3,572|0,994
3,320 |3,790 {3,791 13,637 0,993
3,220 (3,811 3,788 |3,681 {0,984
3,14513,814 13,329 13,724 |0,977

Table 4

8y 8y
1,075 |1,

067

1,054 1,044
1,051 {1,026
1,034 }1,013
1,021 [1,008

1,025 |0,
1,012 g,
1,60710,

996
339
985

0,997 [0,981

By B4

0,993 10,879

84"

2,077|1,07
2,4981,09
2,818(1,07
3,060{1 ,0

61,074
711,097
211,034
1,043

3,24611,032{1,048

3,388(1,01
3,496 1,01
3,579(0,99

511,047
31,032
81,020

3,642/0,9901,000
3,69010,985 0,995

Commas represent decimal points.

1,072
1,048
1,030
1,018
1,005
0,997
0,990
0,986
0,982
0,979
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Table 7 /6

—
rr

el vy |vs [y Lvg [ ve [ve | vg | vs | Ys
0,10]14,14[14,1314,07|89,48|89,31|89,10/693,8/692,4|692,4
0,25|15,11|14,81 |14,16|96,31|94,21 | 0,75 |750,4|731,5! 712,8
0,40 14,74|14,26|14,23|95,29| 92,23 | 91,03 | 785,2| 732,2] 728,4
0,55|14,55]14,71 [14,29 95,22 96,53 | 92,84 | 764,8| 777,2{ 740,3
0,70|14,87}14,93|14,33|97,68| 98,18 93,53 | 785,3{ 792,5| 749,4
0,85| 14,85 14,97|14,36|96,82| 98,45| 94,06 | 787,0|794,5| 758,3
1,00| 14,72{14,587| 14,38 98,84 99,20] 94,46 | 782,0 | 805,2 | 761,86
1,15/ 14,68|14,94]14,40| 97,11 98,68| 94,77|788,8|799,4| 765,8
1,30] 14,61]14,83 14,42 | 96,53 | 96,72 95,00 | 783,8| 785,68 | 768,7
1,45] 14,501 14,68114,43 1 98,55] 96,94 95,18 784,71 786,31 771,1

Commas represent decimal points,

_.
In calculating the f(B)(g,t) profile, 250 combinations determined the
2) 2
argument f( )(E,tl

(1) 2
argument f (§,t2), t,<t .

Tables 4 and 5 (initial condition (18)) and 6 and 7 (initial condition

), t St ten combinations were used to determine the

(19)) show the values of a number of higher moments of the distribution

function:

a,=<ets; gy = Loty sy, =%<F;2p2>;

1
2
Y4:<(52 +p2)25; Ye =< (E2 +p2)3 5 Yg =< (E2+ p2)45,

(2)

The prime designates the moment calculated from fr , and the double prime

designates moments calculated from the relaxation kinetic equation.
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THE STRUCTURE OF SHOCK WAVES IN A GAS
CONSISTING OF IDEALLY ELASTIC, RIGID SPHERICAL MOLECULES

F. G. Cheremisin

1. Principal Approaches to the Theoretical Study

of the Structure of thgiShock Layer

Analysis of shock wave structure is one of the classical

problems of kinetic theoryj; a satisfactory solution has not yet been obtained.

Works dealing with this problem may be subdivided into three groups.

The first group contains those works in which a sufficiently rough
and, in essence, little justified approximation of the distribution function
and Boltzmann equation are replaced by a system of moment equations [1-3],
or Navier-Stokes equations are solved [4-5]. An important contribution to
evaluation of such attempts was made in [6, 7] in which it was
shown that there is no convergence in the Grad and Barnett expansion
with M>1.65 and M>2.1 respectively. When the Mach numbers are not very
close to 1, we know that the conditions for the applicability of the Navier-
Stokes equation (small changes of the hydrodynamic quantities over the
mean free path of the molecule) are not fulfilled; at best, one could

expect qualitatively reliable description of the transition layer.

The second group of works includes the solution of '"model' kinetic
equations, the physical significance of which is close to that of the
Boltzmann equation [8]. For this equation it is possible to obtain an
exact numerical solution, which, one would expect, is qualitatively and
to a certain extent quantitatively close to the solution of the Boltzmann

equation.

The third group includes works in which, instead of the solution of
the kinetic equation, some statistical process which provides a relatively
correct model of the investigated phenomenon is used [9-11]. 1In this case,
as in the case of the Boltzmann equation, the solution is carried out at
the distribution function level, and consequently involves all of the diffi-

culties associated with the necessity of remembering functions with a

6k
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large number of variables. The volume of calculations is significantly
decreased by abandoning the Boltzmann collision integral for a statistical
model of individual molecular collisions. However, abandoning the kinetic
equation has some drawbacks, in that the constructed random process does

not adequately represent the true physical phenomenon. Perhaps these are
the causes for the nonstatistical fluctuations on the profile of hydrodynamic
quantities in the above works. Lack of memory space in electronic

digital computers forces either subdivision of the phase space into quite
large cells or limitation to a relatively small number of test particles,
which leads to significant statistical noise, which makes isolation of the

solution of the problem difficult.

In references [12, 13], the shock wave structure was investigated
on the basis of one iteration of the Boltzmann equation, based on the gas
dynamic discontinuous Rankine-Hugonio solution. The nonmonotonic behavior
of the density, temperature and velocity curves is of some interest, but

at the same time it indicates the necessity for further approximations.

2. The Presentation of the Problem;
Choice of the Molecular Model

Rigorous treatment of the problem of the structure of shock waves

necessitates solving the kinetic Boltzmann equation:

a£ = Jf] (1)

55%

with boundary conditions
f(g;x““”)“fg(f;nly'rl:ul); (2)
fOE; t =) "fo(g}nzyTz’uz),

where
> % 732
fo(g; N, T: U) = (2—mf> nexp{ — ;_nA(_g__,.u_)_._ .

T u

10 Ty n T u, are associated with the Rankine-Hugonio

The parameters n 21 To91 Uy

1,
conditions.

The solution found for f(g,x) must subsequently be used for calculation
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of hydrodynamic quantities (density, temperature, velocity, momentum and

energy transport), the behavior of which inside a jump is of fundamental

physical interest.

Equation (1) with boundary conditions (2) shall be solved using
an iteration ''tree," as presented in the previous work of the author
(this collection). Using this method, it was possible to carry out three

iterations of the Boltzmann equation using a BESM-6 computer.

Ideally elastic spheres of constant diameter ¢ and with no internal
degrees of freedom were taken as a molecular model of gas. The collision
integral, given in expanded form in the above-mentioned work, can be trans-

formed to the following form

JIf) = ~vIf 2f+ NIff7 0, (3)

where

y[fl]'l= 2n02fff f1|q1d§1dn1d§l;

-0

H rer o0 1 l
Nff1 = =2 o fip of J[f{ gl sin(=e@)dedede dn d,
- 00 0

The zero iteration is a solution of the model kinetic equation, which is
_’
obtained from (1) and (3) by substituting vr(n,T,u) for v[fl] and
- -
vrfo(g;n,T,u) for N[f'fl'].

In the rigid elastic sphere model the quantity vy is equal to
The purity of collisions is selected in such a manner that within the limits
of the continuous medium the correct value of the viscosity coefficient
is given, but a value of the thermal conductivity coefficient
different-from the true coefficient by 50% (since Pr = 1,

and not 2/3).

3. Numerical Calculation Method

The calculations were conducted for Mach number M=2, The boundary con-

dition at -» was transferred to a distance equal to -4.1)\ from the initial
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gas-dynamic discontinuity, while the condition at +% was transferred to

a distance of +2\A, where A is the mean free path in the oncoming stream:

A o= 1/\/5 ’7‘0’2111‘

Calculation tests revealed that further removal of the boundaries /68
does not have any effect on the results. The integration region along the
x-axis was subdivided into 431 equal segments &, which determined

the minimum magnitude of the step along the space coordinate.

By integrating equations (1) and (2) when E>0 and when £<0, we obtain

- X sy
f(!’;>0,1')=f0(§;nl,Tl ,ul)exp{_éi v(g,xl)dx1]+ (%)

x -»>
f V(E.)xz)dxz dxl;
Xy

1 Y2 1
+-E: ‘{N(E,xl)exp —-E

‘J(E:xl)dxl + (5)

e

fg<0,x) = fo(Es 1y, Ty 112)(’xp{— I—}T

b *1
+lfN(€,x1)cxp{—~—1—f
£, tel «

(@a=—4,1%; b=22)

v(g,xz)tixz dx,

The integrals of the formula for model kinetic equations can obviously

be obtained from (&) and (5).

One characteristic of expressions (4) and (5) is the factor 1/E,
which occurs during integration over x. If one assumes that the quantity
v(g,x) is insignificantly dependent on £, then the "attenuation'" of the
exponents which enter into (4) and (5) is proportional
to the gquantity 1/€. In order to achieve the necessary accuracy, the integral
in which such attenuation occurs must contain a sufficient number of division
points. As a result, the integration steps along the x-axis are selected

to be dependent on §. In integrating the model equation it is assumed

that
AX = Sx 1+ E .
< ksx vr) (6)
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The quantity Ve is taken at that point at which the value of the distribution
function is calculated. The factor k determines the number of exponent

division points which are included in the attenuation integral, and aids

in the best choice of calculation conditions.

In the integration of the Boltzmann equation, the quantity V. in formula
(6) is replaced by Vo the collision frequency, which is calculated from

the local Maxwell distribution function [14]

vo(F:; n, T,u) nﬂ_»)if_ e Py -“)‘f-:z%l- erf(£) ¢, (7)
VT ?

where o E)
. \/(&—!1)2 en? gt
eV T 2T

The moments of the distribution function were calculated as functions

of variables §, p=1n2+g2 by a regular method. Values of £ were taken in the

interval -3.5 to 5 thermal velocities and values of p were taken from

zero to 4.3 thermal velocities. In solving the model equation and performing
the first iteration of the Boltzmann equation for the calculation of moments
at each point x, approximately 2500 values of the distribution function

were taken. The moments in the second and third approximations were
calculated by taking into account theoonvergence of the iteration, while
the values of the distribution function in the previous iteration were used
for increasing the accuracy of calculations. The differences in moments

were calculated:

(2) (1

My =M oM <y P - e

w.(f(3)~[(2))dx.

[

In the second approximation, in order to achieve calculation accuracy on
the order of one percent, 1000 values of the distribution function at each
point x were sufficient. In the third iteration calculations, 250 values

of f(3) ensured an accuracy of approximately 3%.
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L. Solution of the Kinetic Relaxation Equation

Calculation of the shock wave structure on the basis
relaxation (model) kinetic equations may be considered an independent
problem, the solution of which was obtained in the above-cited works for
Sutherland's model of molecules. On the other hand, the problem of the
solution of the relaxation equation may be viewed as a simplified variation
of the program for the solution of the Boltzmann equation, in which the
return to the subprograms for the collision integral is replaced by the

calculation of the quantity v_ and N_=v_f .
r r ro

In solving the relaxation equation we also use the integrated iteration
method, but, in contrast to the method used in [8], we did not use integral
equations for density, temperature and the average velocity; rather, we
made the calculations through computations of distribution functions
in an appropriate iteration.

From the discontinuous values of n(o), T(O) and u(O), we calculated

the distribution functions in the first iterative approximation; from the
. . 1

function thus obtained we calculated the values of n(l), T( ) and u(l),

which were placed in the memory for each of the 431 subdivision points along

the x-axis; the process then was repeated until the iterations converged.

This differed from method [8] principally in that we used a gas dynamic
discontinuity, rather than the smooth solutions of the Navier-Stokes.

equation, as the zero approximation.

The iteration based on gas dynamic discontinudity is simpler, since
it does not require preliminary solution of the Navier-Stokes equation;
however, in this case an undesirable phenomenon occurs: there are
"humps" on the n(x), T(x), and u(x) curves to the right of the initial jump
(Figure 1) (thus, the "humps'' noted in reference [12] result from the initial
discontinuity). In subsequent iterations these '"humps'" dissipate and shift
towards +®; they thus distort the boundary conditions to the right of the
jump. We applied the method of improving convergence by artificial "trun-
cation of the '"humps'" as soon as they appear. Figure 1 shows
that with each new iteration, less and less correction is required. By

the end of the sixth or seventh iteration, the magnitude of the "humps"
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is equal to the accuracy of calculations (0.5%), and the

iterations themselves converge with the same order of accuracy.

351
2,01
157
10
-4
Figure 1. Solution of the kinetic relaxation equationj
—e~-e— first iteration; - - - third iteration; seventh iteration.

For future reference, it is important to note that the principal approach

to the solution is achieved in the first three iterations, even if the

discontinuity profile is used as the '"zero!" approximation.

Some qualitative explanation for this may be given by considering

formulae (4) and (5). 1In both formulas, the first term to the right

dominates the second term at distances from the boundary of order Aj; in this

region the first iteration considerably reconstructs the initial distribution
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function. However, the solution of the problem shows that the jump thickness
is ~3A and three iterations are required in order to cover the whole transition

region.

5. Solution of the Boltzmann Equation /72

The n, T, and u profiles calculated from the kinetic model equation were
recorded on magnetic tape and served as the basis for subsequent iterations
of the Boltzmann equation. The zero iteration was taken to be the local Maxwell
distribution function fo(g; n, T, u), with parameter values which are solutions
of the model equation. Such a choice makes it possible to reduce the calcu-
lations in the first iteration, since the integrals vo[fO] and No[fo'fOI'] are
analytically expressed through the vector £ and the parameters n, T, and u,
the quantity VO is given by formula (7) and No is determined from the equilibrium

condition

No= vofg:

The choice of the local Maxwell distribution function as the zero itera-
tion allows the use of the decreased dispersion method, based on the identical

transformation of the collision integral

YD) L D0 )y vy i
N(l)[f(l) fil) ]E‘:N(l)[f(l) f(ll) —f(O) f(lo) ]+N0.

i

(2) (2)

Analogous calculations of V and N are made.

(3)

Each value of the distribution function in the third iteration f was

(2)

calculated from an average of 200 f values; the calculation of a single

(2) (1) (1)

value required approximately 200 f values, while f was calculated

(0) (2)

from approximately 15 f values. When carrying out two iterations the f
function was calculated at each (E, x) point from 600 f(l) values. The integra-
tion results are represented in Figures 2-5, The density and temperature values
refer to the values in the oncoming stream, and the selected velocity scale is

vy = Tl/m.

Figure 2 shows the agreement of the values of hydrodynamic parameters cal-

culated in the first, second, and third iterations of the Boltzmann equation.

71



©,

/73

»
bt

2,0

1,5

10 —

Figure 2: Solution of the Boltzmann equation; .... first iteration;
++++ second iterationj; AAAA third iteration; oooo third iteration
on another initial profile; - - - solution of the relaxation
equation.

In order to evaluate the obtained approximation of a precise numerical
solution of the problem, the equation for the conservation of mass flow

in a plane shock wave is used:
jon(ou(x) = nyl . (8)

Since relationship (8) is not used in carrying out the successive iterations

of the Boltzmann equation, the deviation of the calculated mass flow 174
from its true value permits judgment regarding the convergence of the

iterations and the degree of the achieved approximation to solution

of the problem.

In the second iteration the average deviation (Aj(2)> =0.12, which
is approximately 4.5% of the j value with a mean relative error of

(2)

1% in calculating j
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(3)>

In the third iteration the average deviation <_Aj =-0.05, which

is approximately 2% of the j value and approximately equal to the mean

(3)

relative error in calculating j

One would expect that the same approximate accuracy of convergence
to the true solution of the Boltzmann equation could be achieved. Integration
at a number of points on the x-axis was performed (circles in Figure 2) as
an additional check on the convergence of the iterations, starting with

a second '"zero!" iteration.

The local Maxwell function was used as the second ''zero'" iteration;
values of n(x), u(x), and T(x) were calculated from the first iteration

of the Boltzmann equation.

Figure 2 shows that within the limits of statistical
computation error the values found for u(x) and T(x) coincide with

the earlier calculated values.

Figure 2 also shows u(x) and T(x) profiles calculated from the
kinetic relaxation equation. The closeness of the density, temperature
and velocity values obtained from the relaxation and Boltzmann equations are
apparently attributable to the fact that at relatively small M numbers,
the principal role in forming shock wave structure is played
by the viscosity processes; thermal conductivity is a secondary process,
whose role is reduced to some redistribution of the heat released in the

shock layer [15].

The kinetic relaxation equation which we used with a frequency
chosen with '"viscosity!" taken into account, gives the correct expression for

the viscosity coefficient and thus describes viscous energy dissipation well.

Figure 3 shows the change in the thermal flux in the shock layer.
It can be seen that the relaxation equation gives a significantly different

Q(x) value.

1 =~ >
Here Q)= 5 f(;-—u)[(g~u)2+n2+ ;2]f(g, ;;)dg,
-
Figure 4 shows the changes in entropy S = 1/n I f 1n fdE in the shock
wave. Let us note the difference between the accepted Boltzmann determination

of entropy and the thermodynamic entropy Sv=cvln(p/pY), which is used in
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the description of the method based on the Navier-Stokes equation; it /75

assumes conditions to be close to local thermodynamic equilibrium.

-3

Figure 3. Thermal flux in a shock wave; ~A- third iteration;
- - - relaxation equation.

Figure 5 shows that the local thermodynamic equilibrium

conditions in a shock wave of average intensity are not fulfilled: the

gas possesses two significantly different temperatures, of translational degrees
of freedom: 1longitudinal temperature Tll and transverse temperature T22.

By definition:

7h



T|1 =;11‘ / (ﬁ-—u)zfdg;

L (2 2)fdE.
Tyy =55 [ (12 +82)fdE /o7

The u(x) and T(x) curves are used in computing shock wave thickness;
it is defined by the formula [16]:
d LY Hall SR
r (d 1‘/dx ) max
The obtained values are dT -~ 2\ and du z 2)\; these agree with Tamm's
estimate reported in reference [1].
Figure 6 gives the profile of the distribution function f(€, 0, 0, x),

calculated for three different points inside the shock layer.

(76

)

0- -2 Z4

Figure 4. Change of entropy in the shock wave; entropy
according to Boltzmann; - - - thermodynamic entropy.
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Figure 5. Longitudinal temperature T

T22 in the shock wave.

11 and transverse temperature

7;1/_5, 00,2)%

406 1

004 |

008

?

0

-y - 0 4 5/
Figure 6. Distribution function profile at three points
inside the shock layer.
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THE SOLUTION OF THE RELAXATION PROBLEM FOR THE
BOLTZMANN EQUATION BY THE INTEGRAL ITERATION
METHOD

Ye. F. Limar

One of the simplest problems involving the Boltzmann equation is the pro- 479

blem of relaxation of some initial distribution function which depends only

on velocities, to Maxwell's distribution function. Earlier, this problem was

solved by Wachman and Hamel [1] by the discrete ordinate technique [1]. The

results obtained in this work have shown that the proposed variation of the

method is not effective in a 'monlinear'" case, since in this case the density
decreases significantly with time. Other methods used for the same problem

were those of F. G. Cheremisin [2] and Ye. M. Shakhov [3] in the work published

in this collection.

Let us write the Boltzmann equation for the relaxation problem in which the
distribution function f(t, u, v) is time dependent and is also dependent on two
other variables u and v (the velocities of rigid spherical molecules) and in a
cylindrical coordinate system:

t t ¢
f=fyexp(~f LdD) + [Gexp(—f Ldg)dr,
0 0 T (1)

here Yoo co 2T [T e g ST
< U
Lify=2rn [ [ f fluv)0y (=) v +]-2Vv, cos(y ~y;)x
- 0 0
xdy dv du, ~
is the collision frequency;
+ o0

o 20 T
11D I A ff(u’,u’)f(u{,v’l)lwlvls,inedodq;d\yldvldul ~
0 00

—-2a

is the integral of return collision.

The relative velocity of the colliding particles in the cylindrical co- Z§O

ordinate system has the form
W= (U-Uu .l)cos 0 +sin0(Wcos(y = <P) -~ VICOS(‘Pl - ‘P))'

and the velocity of molecules after the collision is represented as follows:
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b

v =2 iwsino(wsino =20 cos{y —~9));
U'1 ==\/U12 + Wsin O (wsin0+2v cos(yy ~ @)
N’ =U— Wcos9; U] =HU;+WcosO.

Equation (1) is written in dimensionless form; in doing this, the following

relationships are utilized:

. 3
W s - s * il % .
U=y Vﬁ?ggﬁT, fv) =f /n<2ﬂkT> ’

bt _Jﬁ_>-% czn.
onk T 2

In these expressions, the quantities with asterisks are dimensional. Equation
(1) was solved by the iteration method; as the zero iteration solution of the

model Krook's equation was used, which in dimensionless form may be written as

follows:
flt,u, v) = (fo — fm) exp{—4,525t1 + foc y

here
f, =ft=-c, 11,v)f=exp[_7z(u2+v2)], (2)

and as the initial distribution function, a function of the following form is

selected

fo=0, e,qo(_{al[(u—ul)2 0D+ ozzexp(~ﬁ2[(u+U2)2 w?D), (3)

where due to the earlier assigned form of the distribution function (2) when
t = @, six parameters in the expression (3) were related by three equations,
indicating time independence of density n, and temperature T, and the average

velocity equaling to zero.

The iteration process was carried out as follows. The velocity space u, v
was subdivided into squares, the distribution function in each square being
approximated by the second-order surface from the values of the distribution
function at nine points. The set of all of these points forms a net-
work of u, v values at the nodes of which the distribution function can be

found from formula (1). The time integrals were calculated by the

trapezoid method, while the L and G integrals were found by the Monte Carlo
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method. It should be noted that a significant part of the machine time is

0

43 06 ot

Figure 1. Relaxation of the additional stress AP

relaxation of Krook equation;

eees First iteration; xxx fourth iteration;

AAA  F. G. Cheremisin's [2] solution.
used in calculating the velocities of molecules after the collision,
therefore, in this work the L and G integrals were calculated for all t values
simultaneously. This permits a significant reduction in calculation time.
In calculating the L and G integrals certain methods for the reduction of the

distortion were used [4], which also reduced the computer time. At the end of
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each iteration, coefficients of the approximating expression and the moments of
the distribution functions were determined. The computation time for one
iteration on a BESM-6 computer for various combinations varied from 3 to 30
minutes ; the latter corresponded to the computation of integrals based on a

sampling of 1,000 combinations.

Certain calculation results are shown in Figures 1 and 2, where changes

of the moments are shown:

APy = 2m [f(fGu,v) — f_(u,u0uvdidy;
S = —27 [f (fl,vyuv (u? + v¥)dudy

and

an = 2 (f (flu,v) — £ (uyv)vdudy;
AT = 2% ff (fQu,v) = f_(u,uNvu® + v dudy

as a function of time for symmetrical initial functions with parameters

ap =, =092 By=By= 47l Up=l,=1/2m.

0206
60%
0,062

-Q002
-Qdoy
-0,006

Figure 2. Time dependence of the additional moments AT,
An and S.

The curves for deviations of density, temperature and heat flux from their

equilibrium values give some idea concerning the accuracy of the calculation

results, since in this case they must be constant and equal to zero. £§3
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For the above_mentioned initial function, which is characterized by a small
deviation from equilibrium at the initial moments, calculations have shown
rapid convergence of the integral iteration method. 1In attempting calculation
from the initial function, which exhibits a large and asymmetrical deviation

from equilibrium [3], it was found that the calculations accuracy is

reduced and as a result, after a certain number of iterations the

results begin to diverge. The reduction in accuracy is associated with the

fact that in this variation of calculations Maxwell's distribution function

was subtracted in order to reduce dispersion in calculation of the L and G

integrals.
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APPROXIMATION METHOD FOR THE KINETIC BOLTZMANN EQUATION

Ye. M. Shakhov

Introduction

The basis for the kinetic theory of gases is the Boltzmann equation. /84
The difficulties involved in its solution are well known. These diffi-
culties result, first, from the large number of arguments in the

distribution function (in the general case equal to seven); second, they

are due to the complex structure of the collision integral.

The most promising idea for solving these problems is derived from
the theory of rarefied gases, wherein principal attention is given to several
first moments of the distribution function, i.e. certain average characteristics.
This means that the behavior of the distribution function in this region
of changing molecular velocities, which does not change the value of the
pertinent moments (i.e., especially in the region of very large and
very small characteristic molecular velocities), is not significant. This
idea is used in different ways in various methods for solving problems

in the theory of rarefied gases.

In the moments method, the distribution function is not calculated
at all, but is assigned more or less arbitrarily with an accuracy to several
macroscopic parameters, which are subsequently determined from the system
of moment equations. In direct numerical solutions of the kinetic equation,
the above considerations are used first of all in choosing the limits for
the region of change in the characteristic molecular velocity (the bounded
region is considered to be "infinite," if in the rejected part the distribution
function is so small that it does not significantly change the values of
the pertinent first moments; the higher moments are generally
not taken into account), and secondly, directly in the calculation process 165
(the calculation of many quantities, defining the distribution function,

is carried out with low accuracy).
In an earlier work [1] the author proposed a method for approximating

the Boltzmann equation (more accurately, for the Boltzmann collision
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integral), based on requirements of equality of several first moment relation-
ships from the precise and approximate collision operator. The purpose of the
approximation is to replace the structurally complex collision integral of the
Boltzmann equation with a significantly simpler one which preserves the princi-
pal characteristics of the Boltzmann equation only to the extent dictated by

the necessity of sufficiently accurate calculation of the pertinent distribution

function moments.

The idea of replacing the collision integral is not new, After the relaxa-
tion model of the collision integral was proposed [2], kinetic model equations
became the subject of many investigations (for example, see [3, 4, 5]). The
most interesting of these works, devoted to generalization of the Krook

equation, was carried out in the investigations of Holway [6].

The general method ordinarily used in constructing kinetic models is as
follows. On the basis of physical considerations, reverse collision and
collision frequency integrals are selected as functions of molecular velocities
and a system of certain macroscopic parameters. The collision integral of the
selected form conforms to the conservation equations, which leads to a decrease
in the number of independent macroparameters; they may even (as in the case
of Krook's model) be expressed in part through the distribution function moment.
If the conditions for satisfying the conservation equation do not lead to
expression of the necessary number of macroparameters through the distribution
function moment, one can assume their dependence on the moments (as in Holway's
model [6]). The remaining undefined macroparameters are determined from the
condition of the coincidence of stresses and thermal fluxes in the limiting

transition to a continuous medium, using the Enskog-Chapman method.

Aside from this general method, which is ordinarily used in constructing
the kinetic equations. the Gross and Jackson method can be used for con-
structing the linearized Boltzmann equation models [7]; this is based on the
use of the eigenfunctions of the linearized collision operator for the Maxwell

molecular model. In contrast to the already-described /86
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Krook and Holway method, which leads finally to one model, this method gives
a regular procedure for constructing a sequence of kinetic model equations.
In spite of the specificity of the Gross and Jackson method, Sirovich

[8] made an attempt to apply this method to the nonlinear Boltzmann equation
by expanding the distribution function which enters the collision integral
using Hermitian polynomials. As already noted, the Krook-Holway method

in its ordinary form does not permit the construction of a sequence of model
equations. However, the possibility of generalizing and constructing
consecutive approximate kinetic equations is inherent in the method itself,

if one views it from the standpoint of moment equations.

In fact, requiring that the conservation equations be satisfied is
equivalent to the combination of conditions of the equality of moments from
the collision integral of the zero, first, and one moment of the second
order to the corresponding moments of the Boltzmann collision integral.

The requirement of converting to a continuous medium can also be expressed
by means of moment equations, not by the Enskog-Chapman method.

For example, for the relaxation model in the Krook form it is sufficient

to use second-order moment equations and to impose the requirement

that all moments from the collision integral to the second order inclusive
coincide with the corresponding moments of the Boltzmann collision integral
with a constant collision frequency (independent of the molecular
velocities). By increasing the number of conditions imposed on the

moments of the collision operator and selecting it in a definite form,

one can obtain consecutive approximate kinetic equations with an approximate
(in the moments sense) collision operator, which was in fact proposed in
[11.

Let us note that the Gross and Jackson method is essentially also
based on the use of the moment relationships for the collision integral,
since eigenvalues of the linearized collision operator are in fact its

moments.

This work is devoted to further development of a method for

approximating the Boltzmann equation. A case of pseudo-Maxwellian molecules

is considered in detail. A method of approximating the
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collision frequency is discussed. A method for approximating moments of the 1?7
Boltzmann collision integral is proposed. The approximation of the collision
frequency and collision integral moments enables one to reduce

each kinetic equation approximating the Boltzmann eguation to a form which
differs very little in complexity from Krook's model equation, since the

return collisions integral and the collision frequency are expressed

through the distribution function moments. For the approximating

equatioms thesame numerical method is applicable as for Krook's equation;

the most promising is the discrete velocities method [5].

Since the principal results of the work refer to the approximation
of the collision integral which determines the relaxation process, two

problems on relaxation in homogeneous unbounded space are solved as

examples.

1. General Approximation Scheme

for the Boltzmann Equation

To determine the state of rarefied gas, we shall examine the gas in
the absence of any external forces. The principal kinetic equation of

the theory of gases, the Boltzmann equation, is written in the form

of af + .
i) ) - v(Of;

1) = (f;adodE,; v = [ f180dE, ;

(1)
do = bdbde; g=|E—£,!,

where f(t,xi,gi) is the distribution functionj; §i is the molecular velocity
vector; g is the modulus of the relative velocity of colliding molecules;
b and € are collision parameters; o is a collision cross section; summation
over the recurring indices is proposed. We shall define the distribution

function moments in the ordinary way:

-
mn -m(fde;

P =
fu;=m e fde;
Pii=mfc,c,fde, c;-8.-u;
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where m is molecular mass and éij is the Kronecker delta.

If the function f satisfies the Boltzmann equation, then, as is well
known, its moments satisfy the infinite system of moment equations, obtained
by multiplying (1) by 1, §i, 52, gigj, §i§j§k, etc., and subsequent integra-
tion over the entire velocity space. Here it is assumed that at high
velocities gi, f decreases quite rapidly,so that all the integrals are real.
However, this does not mean that the system of moment equations (even an
infinite one) is equivalent to the Boltzmann equation. The reverse argument,
that if the system of distribution function moments satisfies the moment
equations, the distribution function itself satisfies the Boltzmann equation,
has no substance, since we do not know how to convert a system of moment
equations to the Boltzmann equation. In order to make this possible, additional
assumptions regarding the expression of the distribution function through the
moments and regarding the smoothness of these moments and their convergence

must be made.

The structure of moment equations is well known [5, 9], and we shall

not give them here.
In addition to the precise kinetic equation, let us consider the approxi-

mate equation

d
0_:: + E’ic')XFi = Q(F, g;, a(t, N, (2)

S8

where Q is an approximate collision operator which depends on the distribution
function F, molecular velocities and some set of macroscopic functions,
designated by a single letter a(t, xi). The form of the operator Q is thus

still random.

We shall call equation (2) an equation which approximates the Boltzmann
equation in the moment sense, if a certain number of first-moment equations
of the approximating and precise kinetic equations coincide. Since the
differential parts of equations (1) and (2) coincide, the differential part
of the moment equations must also coincide. Consequently, a necessary and
sufficient condition for the coincidence of the moment equations is an /89

equality of the corresponding moments of the approximate and precise
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collision operators, i.e.

[QudE = f [(F)ydE, )

v=1,85;, 88> E[ﬁjﬁk,... .

More rigorously, equation (2) will be called an approximating equation
of the nt approximation for the Boltzmann equation if conditions (3) are
fulfilled for all ¢, which includes power-law monomials with respect to
velocity components of the nt order., If in the nth order approximation not

all power-law monomials of the n® order are used, but only part of them, the

approximation will be called an incomplete nth order approximation.

Equations (3) for the assigned form of the operator Q as a function of
F, §i and a(t,xi), serve as the definition of the set of macroscopic
quantities a(t,xi) at each point in physical space at each moment of

time; the number of unknowns must be the same as the number of equations.

Conditions (3) have a simple physical meaning. In fact, for a
random distribution function F(t,xi,gi), the quantity ng is the number
of molecules 3 (i.e., at velocities within 3 to €+dg limits) at the
point x, of the physical space at time t. The quantity
J(F)dg is the rate in change of the number of molecules E as a result of
collisions, and the quantity §i§jJ(F)dg, for example, is the rate of change
in the momentum flux component due to changes in the number of molecules
3 resulting from collisions, where the integral of ging(F)dE is the rate
of change in the same momentum component due to the collisions of all

molecules.

Thus, conditions (3) require that the operator Q have the conservation
of properties of an exact collision operator with respect to the quantities de-
termined for all colliding molecules: the rate of change in the number of

particles, momentum, energy, momentum flux, etc.

Equation (2) with an approximate collision operator satisfying conditions
(3), even if the choice of Q is not made specifically as a function of F,
§i and a(t,xi), leads to some interesting conclusions. Specifically,
moment equations obtained from (2) with conditions (3) give accurate solu-

tions for any finite number of the first moments of the distribution
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function of spatially uniform flows of a Maxwellian gas [10, 11]. This

conclusion follows directly from the coincidence of the moment equations and 490
the precise equations with a sufficient number of indefinite functions a(t, xi)

and given initial conditions for the sought moments. If also follows from the
coincidence of movement equations for motions of Maxwellian gas close to

equilibrium that precise Navier-Stokes equations may be obtained in a conven-

tional manner [9, 5].

2. Form of an Approximate Collision Operator

let us now choose the form of the Q operator. In order for equation (2)
to approximate the fundamental kinetic equation (1) as well as possible, it is
necessary to select Q in that form which is closest to the form of the Boltzmann

collision integral. By analogy with the J integral, we shall take Q in the form
Q=Q* - NF, (&)
+ £ -
where Q and N are the approximate operator of the return collisions and the
approximate collisions frequency, respectively.

The separation of Q into operators of direct and return collisions, i.e.,
representation in the form of (4), is highly significant, since the direct
collision integral NF describes correctly (in the qualitative sense) the
scattering of a random beam of molecules with any fixed velocity in a medium

of other gas molecules.
The Q+ and N operators will be considered functions of the thermal velocities
of molecules c; and some set of macroscopic parameters a(t, xi) and b(t, xi):
+ +
Q"=Q (c;yalt,x;))
N =N(c;, b, x))

In order to determine the set a(t, xi) and the set b(t, xi), one can use
moment relationships of type (3), but separately for the return collision

integral and the direct collision integral:
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FvQNE, att, x NAE = [y ]t (F)dE; (5)

fwN (€, bet, x ) FdE = [ yv(F)FdE,

(6) 91
w=1,8;, £i8j> EiEjE s ve s A

Moment relationships (3) are automatically satisfied in this case.
Let us pepresent Q+ in the same form that J+ has in the Mawellian

distribution function, i.e., in the form of the product of the collision

frequency N and some ol characterizing the velocity distribution of
molecules after collisions,
+ +
Q" =N(c;, blt, x , NF "(c;, alt,x; ).
With Q+ of the selected form, the complete collision integral Q is rep-

resented in the form
Q=N(F" - F). )

Representation in form (7) is expedient in that it satisfies most efficiently
the conditions of local equilibrium flow or complete statistical equilibrium.
For convenience in subsequent references, we shall rewrite relationship

(3) with the use of (7)

NG "= FYwdE = [J(F)pdE = [ (v~ FF, gdodBdE (8)

y=1,E;, gigl" gigjgk"" .

Assuming the collision frequency to be known (the question of
the approximation of N will be considered in Section 4), we shall turn to
the choice of the form of the F+ function. The only necessary condition for
the Fr function is that when the process approaches equilibrium (complete
or local) this function must converge to the Maxwell function. All other

o+
characteristics of F are fairly arbitrary.

From the physical standpoint it is tempting to apply the most prob-
able distribution principle for the choice of FT, as &as proposed
in [6] for the collision frequency, nondependent on veloci-
ties. Generalization to the random frequency case is not

difficult, since it plays no role in choice of the F¥ form.
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We shall introduce the moments of function F as the system of macro-
parameters a(t,xi); these, in a certain sense, can be interpreted as
density, momentum, temperature, etc., of the colliding particles. By
assuming a certain number of moments F to be known and using the principle
of the most probable distribution, we obtain an exponential expression
for F+, containing in the exponent a certain polynomial for the thermal veloci-
ties of the molecules, with coefficients expressed through the F' moments.

The F*' moments themselves are expressed as the moments of the

collision integral using integral relationships (3) or (5).

Specifically, if consideration is limited to the first five moments, ZPZ
corresponding to invariant collisions, then F' can be obtained in the form of the
Maxwell functions with density, velocity and temperature of the colliding
molecules, i.e., a generalized Krook's model with the frequency of collisions
dependent on the velocity of molecules [3] is obtained. If all second-order
Ft moments are taken into account, an ellipsiodal distribution [6]

is obtained.

When using the maximum probability principle for the choice of FT,
it must be remembered that the integrals may diverge [12, 5]. However,
this difficulty can easily be avoided by appropriate choice of the F'

moments which are used as additional conditions for determining the

most probable distribution.

A more significant difficulty, arising from the use of the F* function
in the considered form is that equations (3) and (5) for determining the
system of macroscopic parameters are complex transcendental
equations which must be solved at each point t, xi. However, one can

assume that F' is close enough to the local Maxwell distribution

(0)

function F that it can be represented in a simpler form [1]:

B (0)  (0) (1) (2
F «F (¢ +a. c.+a..)c.c.+a(}?c.c.c +oaes);
{ L ij iy ik 70T j Tk
(0 e AR
P() =»-~1L—ch /2RT (9)
(2=RT)*

+
When F is in form (9) and the stipulated collision frequency is N,

moment relationships (8) comprise a system of linear algebraic equations
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with respect to the expansion coefficients (9).

If necessary, the representation of F* (9) may be improved

by replacing F(o) by a Maxwell function corresponding to the average para-

meters of the molecules participating in collisions, i.e., by the most pro-
bable function for the stipulated density, average velocity and

the temperature of the colliding molecules. Parameters of this most probable
function are determined by the conservation equétions. The number a of para-
meters which are contained in (9) must be decreased. Instead of (9) we

shall have an expression

. o (10)
FPa B a2 bt ) 4 v
caTl e )
c PG g Gy s

2 . + X +
a;; =(; C,=5;-U;,

(0)

Here FC is the Maxwell function with parameters n™,

+ +
u, and T , corresponding to the colliding molecules. These parameters and the

coefficients a..(z), a, . )
ij ijk .
obtained as solutions of a system of equations obtained from (8) when F

2
’ (l—élj)glgj’ gigjgk’ etc.

Henceforth we will consider expression (9) to be the principal approxi-

, etc., expressed through the F' moments are

is in form (10) and ¥, equal to 1, € g€

mating formula for F , in which, apparently, one can convert from power

monomials to Hermitian polynomials.

Thus, for the return collisions integral we obtain the principal
approximating formula in the form

(SD
Q uNF aNF 1a® +alV¢ w a0 e 41, (11)

[N Ly i

£93

where the expansion coefficients (11) are defined by the moment relationships (8)

or relationships (5). In other words, it is proposed that the return
collisions integral be approximated by the finite sum of the corresponding

Fourier series.

Let us note that the application of the Enskog-Chapman method to the

Boltzmann equation gives the following expression for the return collision

D:: S.c.
]+x v(o)f(O) b 1,_._E_~ cicit (6 1~_% ‘_E_»
2PRT\ @/ " spRT \ 3 J10) (12)

integral
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(0) 0)

where f is the local Maxwell distribution function; V( is the collision
frequency determined from the local Maxwell functions, and  is the gas

viscosity coefficient.

In order for the Fourier series (11) for the return collisions integral
to converge in the least squares sense, existence of the following integral

is sufficient
UTEN? g

J -
NE©®

However, the average convergence in the entire unbounded velocity space,
associated with the condition of sufficiently rapid attenuation at infinity,
has no significance if we are interested in the behavior of third and

lower-order distribution function moments.

From this standpoint it is important to have uniform convergence of
J'(F) and the distribution function in that part of the unbounded region
in which the behavior of F produces the most significant contribution to
the value of the first moments which are of interest to us. The behavior
of the distribution function for very high velocities, on which higher
moments are dependent, has no significance and in numerical calculations
is not taken into account. This situation, as well as the fact that for
any F function the reverse collisions integral J+(F) is a continuous velo-
city function, real at each point of the physical space x; at random time
t, indicates uniform and sufficiently rapid convergence of the solution with

respect to the distribution function moments.

In concluding this section let us note the following: formulation (11)
for the return collisions integral is analogous in form to that proposed
by Grad [9] for representation of the distribution function in the form of
a series (or a finite sum) in Hermitian polynomials, multiplied by the
local Maxwell distribution function. The principal difference between J+(F),
in the case of stipulated F functions and the distributing function itself
is that J+(F) is a local velocity function, determined at each fixed point
in the physical space, in this function playing the role of a parameter,
whereas the distribution function itself characterizes the state of the gas
as a whole in the whole phase space region. For J+(F), therefore, represen-

tation in the form of a function with separable variables of type (11) is
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admissible from the physical point of view. For the distribution function,

on the other hand, such a representation is unnatural, since it stipulates

a certain local gas state with the accuracy of the expansion

coefficients; i.e., it assigns parameters of state, which are then

determined from some differential or integral equations, averaged over

the velocity. The principal characteristic of the rarefied gas, associated
with the free motion of molecules over a significant distance (exceeding

in order of magnitude the dimensions of the elementary cells of the physical
space, which from the macroscopic standpoint may be considered infinitesimal),
is that the distribution function has a significant component in which the vari-
ables t, X §i enter as combinations xi-git, while the representation of zps
F in the form of an expansion with separable variables is lost. From

this standpoint it 1is apparent that the distribution functions in the form

(0)
F’-“F (1+0¢L’]'CL'C]-+0LijkCL-CjCk+o-¢)

can describe only the hydrodynamic motion of gas.

3. Approximation of Boltzmann Equation
for Pseudo-Maxwellian Gas

In the two previous sections a general approximation scheme
was described on the basis of moment relationships for the collision
integral, and the form of an approximate return collisions operator was
selected assuming the collision frequency to be known.
Approximation of the collision frequency will be considered in detail
in the next section. Here we shall consider the problem of approximating
the principal kinetic equation for pseudo-Maxwellian gases, i.e., for gases
consisting of spherical molecules with collision cross sections inversely
proportional to the relative velocity of the colliding molecules. In this
case the collision frequency is independent of the relative velocity
of the colliding molecules, which is the simplest approximation for the
collision frequency. Moreover, when all moments of the collision integral
are expressed through the distribution function moments, the
questions of satisfying the equilibrium condition and the transformation

to Euler and Navier-Stokes equations can be solved in an elementary fashion.

96



Let us assume, by analogy with the Krook relaxation equations, that where

- p
N=fFgodg=2=2,

i is the gas viscosity coefficient and F+, as before, is described in formula (9).

Consider immediately the second approximation, i.e., preserve the power
monomials in (9) up to and including the second power.
In equations (8), instead of system
W=1'gi’gi5j

we can write

= 1vti'cici

Considering that for pseudo-Maxwellian molecules 196

. g 1
Iij““'fcicjjd’?=—-f7pi]-, (13)

we obtain
a L0 (D ()

“ai 301:]- a3

Thus, we obtain a Krook's model equation as the second approximating
equation:

— +E —-

dF JF 1 (0)
5 L-E—;(F - F).

For the third approximation, we shall limit ourselves to representation

of Fr as a form of convolute Hermitian polynomials. Represent
+ L0 (0) (D (nf ¢i¢; 2
F'aF {a  wa, c a2 20 5 Voa'®ef? 5
1 13 l] RT l,] L L2RT 2 .

To determine a set of coefficients a(t,xi) from (8), we can also make

use of the corresponding orthogonal polynomials

€;¢; c? s
v=ben g % Si\grT T2 )"

If, in addition to (13), we take into account the equation

’

)

2., p
IijjnlﬂfCiC IdE *-‘Pr'asi: Pr=

we obtain
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i ij
here Pr is the Prandtl number.

Thus, as the approximating equation of the incomplete third approxi-

mation, we obtain a generalized Krook equation

oF IF 1 gt _ py.
at "Bk me(F oD (1)
+ (D) S.c. c? -
= 1-Pr) 22— — 3|
F =F [1 + ( r) SoRT (ZRT 2)]

+
Let us note that F according to (14) coincides exactly with Fr as
defined in the first approximation using the Enskog-Chapman method (see (12)).

From the moment equations obtained by multiplying (14) by 1, §i, Ez, /97

2 . . .
§i§j, §i§ and subsequent integration over the whole velocity space, we
obtain a Navier-Stokes equation with correct values of the viscosity and

thermal conductivity coefficients when T = O.

Equation (14) may also be called the eight-moment approximation kinetic
equation, since F is determined by eight moments. It is consequently
possible to construct a closed system of integral equations with respect to
the moments n, u,, T, and Si. From this standpoint the Krook equation is
a five moment kinetic equation. In contrast to the thirteen moment Grad
approximation, obtained by formal closure of the moment equations, the
system closure in this case takes place through the
kinetic equation, so that the behavior of the distribution function at some
point t, x; is determined by the distribution of moments in the whole region,

not by the values of these moments at the considered point.

This approximation process can be continued. Here, due to the or-
thogonality of the Hermitian polynomials with the weighting fgnction F(O), system
(3) is solved in an explicit form and the coefficients a(o), ai(l), «s. are
expressed through the distribution function moments. Thus, sets
of equations which approximate the Boltzmann equation are obtained. These

equations can be viewed as model equations for random molecules.

The principal difference between this approach and Holway's method
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of constructing the model equation [6] is, as already noted in the introduction,
the use of condition (3) for the moments of the approximate collision integral;
this enables the development of a regular procedure for constructing approxi-
mate kinetic equations from a single viewpoint. The form of the Fr function

may also be selected on the basis of the most probable distribution principle.

Let us also note that the generalized kinetic Krook model, which insures
the correct Prandtl number in transition to a continuous medium, can be ob-
tained in another form by using moment relationships up to the second order and

selecting the collision frequency by an appropriate method, as was done in [6].

Let us now consider the equilibrium solutions of approximate equations
. . . + .
in a homogeneous unbounded state. Turning to moment equations (8) when F is
in form (9), we will obtain zeros on the left, since at equilibrium the

following must hold:

i.e., in the case of a Maxwellian equilibrium distribution, it is the only one

possible.

Let us now turn to the Boltzmann H-theorem, by means of which the unique-
ness of the Maxwell distribution is established as the equilibrium solution
of the Boltzmann equation. Unfortunately, rigorous proof of the H-theorem with
F' in the form (9) is not possible, since F' and consequently F, can be nega-
tive. However, one can expect that for most cases the expansion coefficients
(9) will be sufficiently small, and F will be negative only in the region of

very high velocities, where F itself is small.

Consider the case of small deviations from equilibrium in a homogeneous
space and limit analysis to equation (14), the simplest of the approximate

kinetic equations which insure the correct Prandtl number.

Multiplying the left and right sides of equation (14) for the case of
homogeneous space, after an obvious transformation of the right-hand side

we obtain,
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C?” 1 + 3 2 o4 -
5t =~ J(E-F )lngr;dw L f(FT~F)InF*dE, H-f FInFdZ.

Taking advantage of the smallness of Si’ we linearize 1n Ft and

utilize moment relationship (8), thus obtaining, when Pr = 2/3,

2

e LrE-rHn E dé—%—____.s” . (15)
p(2RT)?

According to (15), the Boltzmann H-function decreases with sufficiently
small deviations from equilibrium. However, as we have already seen, the
question of the uniqueness of the Maxwell distribution at equilibrium gives
a unique solution regardless of whether or not is is possible to prove

the H-theorem for the corresponding approximate equation.

L. Approximation of Collision Frequencies

The gquestion of whether or not it is possible to consider molecules
pseudo-Maxwellian and, consequently, to assume the collision frequency
to be independent of molecular velocities, depends on the conditions 199
of the problem and the gas properties. Conditions do exist under
which it is not possible to dismiss in advance the dependence of collision

frequency on the velocity of molecules.

In this section we shall consider possible ways of approximating

collision frequencies.

In reference [1] it was proposed to utilize the collision frequency
determined from the local Maxwell distribution function, i.e., instead of

the frequency

N=[F |E~E jodE=[F)|E~C,|odE,
using the frequency

N - rF(IO) |€-El|od5. (16)

For most problems this formula apparently gives sufficiently good
approximations for N, since in general it correctly describes the dependence

of collision frequency on velocity. In particular, for large c,

(0)

N~ N ~ Nn g C.
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Other approximate collision frequency formulas, determined by the specific

conditions of the problem, are also possible.

In principle, moment relationships(6) for the return collisions integral

make possible a more exact formulation of any initial c?l§ision frequency
(o]

approximations. In fact, by assigning deviation from N , for
instance, defined by formula (17), in the form of a series of some functions

of c¢. for determining the coefficients in this series, from (6) we
i

obtain a system of linear equations.

(0)

Keeping in mind that deviations of N from N must be maximum near
the boundaries or initial conditions, the frequency determined from

the distribution function in the form

, t
AP 8

t (0) ,(0) 1 ¢
° +F " [b +b(')ci+"‘] l—e ° s

14

will give a good approximation of the collision frequency;

F0 and to correspond to the initial boundary conditions of the problem.
The b(t, x,) coefficients are defined by relationship (6). However,
i

multiple integrals over a complex region of integration arise.

A simpler way of approximating the collision frequency (if N is not
sufficiently well approximated by N(O)) apparently lies in using approximation Z}OO
formulas for the relative velocity g of the colliding molecules, Let us,
for instance, use the expansion for low and for high velocities. For
simplicity, consider the case when the collision cross section ¢ is indepen-

dent of g.

For small ¢ values we have the formula:

- aN_ 1 _a’N
N*NOJ’(aci )0 ci+§(é"c?é?706ici. (17)

The subscript '"O" indicates that the quantity was taken when ¢ = O. The values

of the derivatives in (17) are expressed by the formulas:

aN _ Ciona.
(TC(:’)O 3 O'I —C rdi‘,,
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92 / 2
c?
)

2
N c.C. >
——) = of —4-Fdg, iy,

Fde;

For velocities ¢ with sufficiently large modulus, one can utilizean
Let us write g in the form

asymptotic expansion of N,

2
2 c
- — - 1 S
g € +Cp~28=¢ 1+—2_—2_2, S=€C;€; s
[of c
For c » ey the following holds:
2
c ; 2
1 S 1s
= ——— e e m — —— F ave |
g=c| 1+ 3T T2 ) (18)

By substituting

with second order accuracy for the very small residuals.

this expansion into the collision frequency expression, we

obtain the following asymptotic representation of N:
(19)
o p pijcic' ?
N== pC + =~ — —-————L—,--'.
In C 3 LN L ]
2¢

.- = 0, we obtain an asymptotic expression which

At equilibrium, when piJ
coincides with the asymptotic expression for the local equilibrium

collision frequency for spherical molecules,

xl

—— — 2 v —_
V2RT{ e il fe dx =
Y/ o v 2RT

-

Formulas (17)~(19) give expressions for the collision frequency
through the distribution function moments.

Approximation of the Collision Integral Moments

S5

The collision integral moments are the most complex expressions

In the general case, they are

of all those which have been considered.
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expressed by eight-dimensional integrals (integration over the collision
parameters and double integration over velocity space). It is true

that integration over the collision parameters can be done analytically,
which reduces the integrals to six-dimensional form. For specificity, let us
limit ourselves to the case of elastic spheres of cross section g and cite

formulas for the collision integral moments CiCj and c;¢

L =mpic/c;- c,-cj)doFFIgdidglz'%E {[:(c“cjl—.‘
_.CL.CI.,)__TIZ_((:L-.l—Ci)(le—Cj)]gFFldgd—él) i4];

> > . . 20
mof[mci2+cicjl+l(ci—cil)2+% Q:IIQFFldi’;dé 14]; (20)

]

4 l)

, s2 >
m f(cic —cicz)d(‘yFFlgd»:dgl=rnof [~cic2+

H

I
i

+

%(ciq-c“)swu%(ugful)gz]gFFldgdgp

g=18-¢8,l, S =CCppe J

Integration over the collision parameters for random molecules
which are the force centers is done in an elementary (but quite
exhausting) way, this being particularly true for the moments of the fourth
and higher orders. A rational way of calculating these integrals was
proposed by Maxwell and described in detail in the works of Boltzmann

[13] and Ikenberry and Truesdell [1%4].

Integration of the collision integral moments, typical examples
of which are integrals (20), is conducted without separation of variables,
due to the presence of the relative velocity. In the case of Maxwellian 4?02
or pseudo-Maxwellian molecules,

o~ 1/g; do ~ /g

the separation of variables is performed, and integrals are reduced to the
distribution function moments. Specifically, integrals (20) acquire
the form:

p . 2P
Iij‘_ﬁpii' Ii/'/’“";?isi' (21)
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The formulas for the derivatives of third-order moments may be found in [9,
5], while the fourth- and fifth-order moments can be found in [15, 14]. Thus,

the model of Maxwellian molecules significantly simplifies the situation.

We do not actually know how real molecules behave, or how valid the model
for molecular interaction is. Conclusions regarding the collision cross
sections are generally drawn on the basis of transfer coefficient data. The
simplification of the collision moment integrals can formally be done by
setting g = constant (when o = constant), not ¢ ~ g_l, and selecting the con-
stant in such a way that equation (21) is satisfied. Such a viewpoint is not
without foundation. In fact, a distribution function which differs little
from the Maxwell distribution function in the first (and a very good) approxi-
mation would have the same formulas (21), independently of the molecular model

selected.

It is thus possible to attempt approximation of the moments of the
collision integral by approximating the relative velocity g. Let us assume

approximately

f(v'“‘?)gFFldOdgdglz‘go !-(\}"—"P)FFldOdEdgl ’

where 99 is some unknown value of the relative velocity modulus. The values
of the integrals, for small distribution function deviations from the Maxwellian
make possible an accurate selection of 99 from the fulfillment of the condition
(21). Here the 99 quantity is found to be the same for both integrals (21):

4
g():?*"‘

o
Since in the general case the 9, value selected in such a manner is approxi-
mate, one can use an expansion in the 9% region for g. Keeping in mind that the
FF1 function rapidly decreases with an increase in the arguments (and consequent-
1y g), one can hope to obtain a good asymptotic evaluation of the integral by Z}OB
limiting ourselves to a linear approximation for relative velocity. Assuming

that

2~ _I__ 2_ 2
3 /g—_go+2g0 (g Go )+ s (22)

and substituting the obtained expansion into the formulas for the collision
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integral moments, we obtain an expression for the latter through the distribu-

tion function moments. Specifically, in the linear approximation the Iij’

Iijj moments are represented in the form
\
- 5PP;j - pikpjk]}' 14];
== Py {% I8 Tigy [‘p@fﬂck* 3 Qiikk\) - )
‘:f]z‘ppij—;%l)i?+;1;‘ pils"%pikpjk‘l s i=];
lLj=—5 ¢ Si *{§ vt Tiig,g {_ S e FdE -
3PS5 S p/A-]}' )

In the random model of molecules, when the collision cross section g may
depend on relative velocity, this requires utilization not of expansion (22),
but of the corresponding expansion of the gg product in the o region,

g

0¥0

where

G380 = ConSt:Q;E,

Here the model of molecular interaction determines the dependence of viscosity

on temperature.

6. The Problem of Isotropic Relaxation in a Homogeneous Space

The proposed method for approximating the Boltzmann equation does not
apply to the differential part of the equation, only to the collision integral.
Since in the collision integral the point coordinates in physical space play
the role of parameters, the possibility and effectiveness of the proposed
approximation method can be significantly clarified in the example of gas

relaxation in a homogeneous space.

In this and in subsequent sections, we present the results of the
numerical solution of two problems of gas relaxation in a homogeneous
space. In the first problem the distribution of molecules by velocities

is assumed to be isotropic (the distribution function depends on the velocity
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modulus), while in the second case it 1s axially symmetric. The solution
of the first problem is compared with the exact numerical solution of

V. A. Rykov [16], while the solution of the second problem is compared
with the solution of F. G. Cheremisin [17]. The collision frequency is
assumed to be an equilibrium frequency, i.e., it is calculated from the
Maxwell distribution function. The model for the molecules is elastic

spheres of diameter d.

Thus, the problem is solved with the initial data for the equation

oF (0)
=N "(F*- F) (24)
at
Here and in the subsequent section all guantities are assumed to be
dimensionless; time is reduced to the mean time between collisions t¥*,

molecular velocity to c*, distribution function to F*, where

t¥z=(fl«nd2\/:RT)ul; C*= 2RT; F*a4\/2 . .

(211RT)3/’

The frequency N(O) for solid spheres has the form [18]:

0 5‘ _ a2 < _x?
N =\/T- e 4 <2c+cl>0[e “dx (25)

Let us first consider the problem of isotropic relaxation. In this
case, in view of the collision integral simplifications, it is relatively
easy to obtain an accurate numerical solution [161].

In view of the distribution function isotropicity, all odd moments are

equal to zero. The F' function is selected in the form

FP=F9 Qv avpr?s yety; FO 9___ e (26)
1V 2

i.e., one utilizes the fourth approximation. For determining the
unknown coefficients «, B, vy, which are time dependent, according to (8)

we have a system of linear algebraic equations:
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INOUFT —Frydc= 2o (y= F Fy gdodldl), y=1,0%c% (27)

The conservation laws require that the right-hand sides of the first two 1}05
equations be equal to zero. In the third equation the integral is reduced to a
two-dimensional integral:

4 .
2 LA 4 . >
T [ ¢ )FF gdodcdc | =
7
4 1 (c€y) —|C—c1[7

0 o0 2 .2 5 5
5 I [FOFCyce, x]- L1 Lo (ereylezall
o 12 7 6 5

(c?+c?)? sJe+ec ) ~1c—-c, 3
+[ 17 _Cl' (T,_l)_“_l____ll__ dCdCl.
4 3

The coefficients of the linear system are time independent, one-

dimensional integrals.

As the initial distribution function, a function was selected for

which an exact solution was constructed [16]:

0,56598 9 <c¢ < 1,30286;
F(0,c) =4 1,41496(1,5— 1,13980¢) 1,30286 < ¢ < 1,77662;
0 1,77662<C <o
The calculations were carried out as follows: In the initial moment

the solution of system (27) was found for the assigned distribution func-
tion. From the obtained a, B, and ¥ values, the F* function was determined
using (26), which together with the known function determined the right-hand
side of (24). The distribution function at time t = 0.1 was found from the
known derivative 3F/dt, by the Euler method with 0.1l intervals. Analogous

calculations were carried out for all other moments of time.

The integrals were calculated by Simpson's rule, with 0.05 intervals in
the range O to 5. Calculations were made on the ''strela'' electronic
digital computer. The results of the calculations are represented in the
form of graphs in Figures 1, 2, and 3. The solid curves are for the
exact solution, dashed curves for the solution by the proposed method with
F' in the form (26), and dash-dot-dash curves represent the second approxima-

tion [y = O, only conservation laws are fulfilled; see the first two equations

in system (27)]. On the same graph, short dashed curves show the results of
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calculations by the Krook model equation. Figure 1 represents the distribu-

tion function at time t = 1, and also the initial (t = 0), and Maxwell func-
tions (t = «). Figure 2 shows the same functions multiplied by cz. The results
of calculations show that the behavior of the distribution function from /107

the fourth approximation is very close to the exact solution.

T

Figure 1. Distribution func.ion F(c) for t=1; —.— second
approximation; - — — fourth approximation; -—----- Krook
model ; exact solution.
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Figure 2.

Function czF(c) for t=1.
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Figure 3. Changes of the fourth-order moment with time;

M, = f & (FO) =Frde:
0

—.— second approximation; — — - fourth approximation; --- Krook model;
exact solution; oese Maxwellian molecule model.

Figure 3 shows changes of the first moment, which differs from the
_’
constant moment, the fourth order moment Qiikk:ICQF dc with time; along

the ordinate axis the quantity

M, = fcs(F(o) - F)dc.
was plotted. The error in determining the considered fourth moment £}08
Qiikk from the fourth approximation does not exceed 1% of the exact
value (the relaxation model gives a 7-8% error). When t = O, the relative

error in determining the M4 integrals is 8%. For the relaxation model this

error exceeds 50%.
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For comparison the same figure (Figure 3) contains points which represent

the values corresponding to Maxwellian molecules for gas of the same viscosity.

Attention is drawn to the significant difference between the results
of the second and the fourth approximations, and also to the fact that the
results of the second approximation are somewhat poorer than from the Krook

model.

The indicated difference between the approximations is explained by
the fact that in the approximation, a key factor is the relationship
between nonzero collision integral moments, since the conservation

laws in essence do not reflect the specificity of the Boltzmann collision

integral. In fact, geometrically, the evolution of the distribution function

and its tendency towards the equilibrium value indicates a continuous deforma-

tion of the t = O curve in Figure 1 to t = . The conservation laws indicate
that the deformation law must be such that the area bounded by the czF curve
and the abscissa axis, as well as the area bounded by the abscissa axis

and the CAF curve (which is the same as the iteration moment of the first
figure), must remain unchanged. The rate of curve deformation

in the second approximation is independent of the accurate collision
operator, and only in the fourth approximation is it taken into account

in the integral sense.

Thus, the rate of approach of equilibrium will correspond in the
moment sense to the Boltzmann collision operator, if above the conservation
laws certain other nonzero collision integral moments are also taken
into account. This also explains the fact that the Krook model
is a better second approximation, since by replacing the collision

frequency by a constant the properties of the Boltzmann collision

integral are taken into account more fully (all second-order moment

relationships are satisfied; see Section 3).

In conclusion, we note that the accepted collision frequency approxi-
mation was found to be quite satisfactory. Comparison of the collision
frequency N_, determined from the initial distribution function, with the

(0)

equilibrium value has shown that maximum deviation of N0 from N takes

place when ¢ = O, and it does not exceed 5%. Because the Krook model with a

constant collision frequency gives rather good results for the relaxation
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problem, one would expect the collision frequency effect to be
very small. Nevertheless, calculations were carried out with the accurate
collision frequency. The results of calculations were found to be practically

the same as those cited above.

7. Nonisotropic Relaxation of Boltzmann Gas

in Homogeneous Space

The isotropic relexation problem is not a characteristic one
in the theory of rarefied gases. Actually, in the stream of rarefied gas,
the distribution function does not possess isotropy in velocities, and it
can have an extremely complex form. Nevertheless, in this section we also
consider the simplified class of distribution functions which relax to the
Maxwell distribution function. Results are given for the solution of the
Cauchy problem for initial functions having axial symmetry in
velocity space. The axial symmetry condition significantly simplifies
the calculations and preserves the principal characteristics of the random
distribution of molecular velocities (internal stresses and energy fluxes

are not equal to zero in this case).

Numerical calculations were made for the distribution function,
which can be represented by a linear combination of two Maxwell functions

with mass velocities (the pseudo-shock problem [19]):

Y =0, [t - U < V*]

FonF(O,c)=a10;e +
y =0, [+ U +V') s 9 9 (28)
+a,0,€ y, V =v +w ,

._’
here u, v, and w are components of the molecular velocity vector c.

Constants a U Uz, e 62 are related by the conditions of constant

1’ %20 10 1’
density and temperature and the absence of mass velocity:

I F, i - fF(o)dE;
S 2
fczFOdcufczF(o)dE; (29)

SuF,dé =0.
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Conditions (29) lead to the following relationships for al, ays Ul’ Uz, ZFIO
Gl, 92:
W+ ay=9/42; al, —al,=0;

2 3 2,03 \..27,
(11<Ul+ 56?) +a2<U2+ 202 8\/_5_

The form of the initial function permits easy calculation of all of

the necessary distribution function moments. In particular

2 - - % 2 1 % : 1
PO ~Ju Fydc =an éh~r281>+a2n élo+—~—>;

< 292

vl 42 % 2 2 5 (1 1
Sl(O)nf‘lc Fodczaln Ul[ul—u2+2—<57"6;>]'

Ir Ule2 in FO, then a;=a,,

symmetric with respect to the u = O plane, thermal flux 2S, is equal to zero
p p ’ 1 q ’

elzezze, i.e., the initial function is

and, for the stresses at the initial moment, the following equation holds:

p..(0)
UE_— =2<1— léj; Pu=Pi— P (30)

where p is gas pressure; is the excess pressure caused by deviation from

Py
equilibrium.

Equation (30) shows that in the symmetrical case the excess pressure
cannot exceed the gas pressure by more than a factor of two {when

09, the initial function becomes a §-function with limiting values U1:U2:

1.5).

The initial function in the form (28) is also convenient in that it

permits calculation of the collision frequency
) - - -
Ny =5 f F(0, ¢ y)jc~cylde; =

p a a
%‘/—T 2L N O 22 NP0 ks
Ve, Vo,

hy o= Aﬂ[W—l“)2+V2h 12=J%2KN+U2ﬁ4-Vﬁ»
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where N(O) is defined by formula (25).

Figure 4 represents the Maxwell and the initial (dashed curve) distri-

bution functions for U1=0.25; U2=2.75; 61

collision frequencies. In spite of large differences in the distribution

Z1.79; 62=2.75 and the appropriate Z?ll

functions, the corresponding collision frequencies are close. Considering
this fact and the fact that the collision frequency itself affects the
solution relatively little, we can assume, as in Section 6, that the collision

frequency is defined by formula (25).

The relaxation problem with an initial function in form (28) was
solved for the approximating equation of the incomplete third approximation,

i.e., for equation (24) with F' in the form:

Q 2
F+=F()(1+a+3u+yc2+6u2+euc ).

In determining the a, B, Y, 8, and € coefficients when

y=1,u,¢c2,u?,uc?

the moment relationships (27) give a system of linear algebraic equations

with constant coefficients. The right-hand sides of these equations

PN - F)dE & o2 [y y) FF gdodEde,

change with time and tend to zero in the course of the establishment of

equilibrium. The collision integral moments for the collision invariants
are equal to zero. For ¥, equal to u2, ucz, one can integrate over the
collision parameters and obtain the quantities in the expression (20) with
an accuracy equivalent to the magnitude of the scaling factor. Axial
symmetry allows the number of quadratures to be decreased to four. As

a result of these transformations, the following is obtained:
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=g_f{[ u? +uu1+41—(u—u1)2]4qA(k)+ \
+5 ¢ B() (FF, VV, dudu, dVdV, ;
=%f [uc +—(u+u )¢ +cl)]1qA(k)+ Gv
3 +u)q B(k) (FF, VV, dudu dVdy, ; 4
e 4vy
viiw?, qmv/(u-ul)2+(V+V1)2; 0<k= ql_<.1;
Vi /2 /2
)= f (1-kcos? w) dw, Bk) = [ (1- kcos? w) dW'
0

The calculations were conducted in the same manner as was used in solving
the isotropic relaxation problem. All of the integrals were calculated by
Simpson's rule within the range -5 < u< 5, 0 < V<« 5 in 0.25 increments.

The selected grid for u, V allowed varying the problem parameters within

broad limits without loss of accuracy.

Calculations were made using complete moments of collision integrals

11° Iljj by the method proposed

in Section 5 of this work, i.e., using (23).

(31) and a linear approximation I

The results of the calculations are represented in the form of
graphs in Figures 5-9. Figure 5 represents the changes in the profile

V=0o0f the distribution function with time for the symmetric case:

Up=lUy=—, 0,20,-3,

AN 1=
calculated for comparison with the results of F. G. Cheremisin [17]. The
dashed curve corresponds to the solution obtained with the Krook equation,
and the dashed curve with x's corresponds to the F, G. Cheremisin solution.
Comparison of the results of this work [17] shows that significant differences
in distribution function behavior occur only in the region of small
velocities. The attenuation of Py, with time with an accuracy to the

calculation errors, as in [17], corresponds to the Krook model (or
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to the Maxwellian molecules), i.e.,

Pyy =Py, (00e708¢, (32)

Figure 6 represents the distribution function behavior in the V = O
cross section; this is the same as for the symmetric case, but with sig-

nificantly greater deviation of the initial function from the equilibrium
function

Uy, =U,=1,

The additional stress attenuates

by essentially the same law (32).
This characteristic of the symmetric case is explained by the fact

that the linear correction in approximating the integral by the

method described in Section 5, which for the initial function (28) is
calculated analytically,

is comparable to the error in Euler method
calculations.

Let us note that in the symmetric case the solutions of the approxi-

mating equations of the second and third approximations coincide.

1913

\
\
\
\
1
\
\

i
1
i

i
\

Figure 4. Distribution functions & (---

initial) ana F©
= Maxwellian) and the corresponding collision frequencies N
and P; V = O cross section.
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Changes in the distribution function (V = 0) with

Figure 5.
time; -X- Cheremisin's solution; ---solution from the
Krook equationj 0
q oo -u, =L, P
VD) p 3

_/_114

Figure 6. Distribution function (V = 0) for the case U, = U2 = 13
0
Pu®
P 3 ¢

117



-2 -1

Figure 7. Distribution function behavior (V = 0) in the problem

of nonisotropic relaxation (asymmetric case).

The problem of symmetric pseudo-shock was considered earlier [19].
Some differences in the qualitative behavior of the distribution function

appeared, apparently resulting from the fact that in [19] calculations were

made with insufficient accuracy (density and temperature in the time

interval from O to 1 differed from the precise values by approximately
10%).

The case of asymmetric initial distribution functions is of significantly
greater interest. Figures 7-9 represent the results of calculations of the
variations U =0.25, U,=2.75, 9121.79, 92=z.75. Here at the initial moment :

pllﬁ))_zo . Sl(o)__
R - 2 ] 3/
p(2RT) ™

The initial function, as is apparent, differs significantly from the

= 1,6.

equilibrium function.

The evolution of the distribution function is represented in Figure 7
(V=0 cross section). Attention is drawn to the fact that, in contrast to
the above-mentioned symmetric case, the behavior of F does not correspond

to the distribution function behavior according to the Krook equation.

According to the Krook model, the distribution function for each value
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of the velocity relaxes independently of the remaining velocities; the
obtained solution, however, indicates the complex interaction of particles

having different velocities.

The attenuation of the excess pressure pll/p and thermal flux
Ef:Sl/p(ZRT)B/Z is represented in Figures 8 and 9. The attenuation of
pll/p and S1 is much faster than for Maxwellian molecules (dashed curves);
attenuation of Sl is slower than that obtained in the Krook model (dash-

dot-dash).

All of the results presented thus far were obtained without the use
of the approximation for the collision integral moments by the method des-
cribed in Section 5 of this work. Computation time for one variant, using
the BESM~6 computer for time intervals of from zero to four, was
approximately 5.5 hours. The approximation of the collision integral
moments in the linear approximation reduces the computation time of a sin-
gle variant to forty-five seconds. Corresponding results for the moments
were plotted as points in Figures 8 and 9. For the logarithmic derivatives
d(1n pll)/d‘t, d(1n Sl)/dt at the initial moment, the exact values are
equal to -1.08 and -0.714 respectively; the Maxwellian model gives -4/5

and -8/15, while the linear approximations give -1.16 and -0.75.
/116
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05t

a25

Figure 8. Attenuation of the excess pressure p /p;
—-—- Maxwell model; proposed method; esee proposed method
with the approximation of the collision integral moments.
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1:

Figure 9. Attenuation of thermal flux; --- Maxwell model of
molecules; ——— proposed method; eee method proposed with the
approximation of collision integral moments; —*—*— Krook model.

Thus, the approximation of collision integral moments, as well 1917
as the linear approximation, insures an acceptable accuracy and decreases
the computer time necessary significantly (in the considered problem by

a factor of more than 400).
Conclusions

The methods developed in this work for the approximation of collision
integrals, based on satisfying the moment integral relationships, choosing
approximating formulas for the return collisions integral and collision
frequency, and collision integral approximating moments, reduced
the Boltzmann equation to a series of approximating equations. Each
approximating equation has an approximate operator for return collisions
and collision frequency, which depends only on the distribution
function moments, i.e., the approximate collision operator in this sense

is analogous to Krook equation relaxation operator.

Any method for numerical solution of the Boltzmann equation (including
the Monte Carlo methods) is also applicable to the approximating equation.

However, the specific structure of the collision integral, which permits
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the construction of the numerical solution without retaining the distribu-
tion function, should also be used in choosing the numerical methods. From

this standpoint, the discrete velocities method is the most promising.
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MODELS FOR THE INTERACTION OF RAREFIED GAS
WITH A SURFACE

A. A. Pyarnpuu

In the course of the investigation and calculation of the flow of a rare-~ 4}19
fied gas, for which the boundaries are in the form of solid surfaces, it
is necessary to know the recoil velocity of the molecules from the surface.
However, the calculation of the distribution function for recoil
particles presents significant difficulties due to insufficient
knowledge of the recoil phenomenon and due to the lack of
knowledge of the surface properties themselves. Even in the case of
isolated recoil of the gaseous atoms from a solid surface, the analytical
expression for the distribution function of the recoiled particles may be
written only for the smooth sphere model [1]; in the case of other
interaction potentials at best an extremely complex expression can be
derived for the momentum and energy exchange coefficients [2]. Taking
into account the collective nature of the interaction, the determination
of the total energy, momentum and other macroscopic properties for the
recoil molecule is possible only by the numerical method. It should
be noted, however, that the volume of calculations is so great, that it

imposes limitations on the interaction model.

In this work, various theoretical models for the interaction of
gaseous atoms with solids at energies of ~ 10 eV are discussed. The
surface is modeled by a one- and three-~dimensional aggregate of atoms with

different initial conditions and lattice parameters.

In calculating the accommodation coefficients, the direct inte-
gration of the equations of motion of gaseous molecules and atoms
in the crystal lattice of the solid is used. An analysis of the advantages
and the drawbacks of the models, as well as the possibilities of the
analytical solutions in a one-dimensional case, is given. The dependence of
the energy, the normal and the tangential momenta accommodation coefficients

on the collision parameters is obtained.

1. Accommodation coefficients. The calculation method Z}zo

All theoretical works on the interaction of gas atoms with a surface

124



are generally devoted to the calculation of momentum and energy exchange
coefficients or the equivalent accommodation coefficients.

Knudsen [3] was the first to utilize the formula o = ’I‘r - Tg/Tr - Tg, [sic]
where Tg is the gas temperature, T is the surface temperature,

Tr is the temperature of the recoiled gas, which corresponds to the quantity
characterizing the energy transfer from the gas to the surface of the

solid - the temperature accommodation coefficient. If one considers a

process in which each molecule collides with the surface only once, one can
determine the energy (kinetic energy) accommodation coefficient and the momen-

tum accommodation coefficient from the following formula
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where the subscript n refers to the normal component of the V vector,

and T refers to the tangential vector component.

The first attempt to calculate the accommodation coefficient a by
classical mechanical methods, based on the well-known properties of gas
atoms and a solid surface with the use of the simplest model of solid spheres
was made by Baule |[4]. However, this model raises some objections
since the presence of the surface is in no way taken into account. In a
study by R. G. Barantsev [1], the interaction of gas particles having an energy
of 5 - 10 eV and a relative mass p = M/m < 1, with the assumption of
absence of an absorption layer was considered for the case of paired inter-
actions. For a simple isolated recoil, the directional distribution
of the reflected particles was obtained for the case of dense packing
of surface atoms. The energy and momentum exchange coefficients were
also calculated. Apparently, one can obtain a sufficiently close description
of the real interaction if one considers nonlinear terms in the expression
for the forces of interaction of both a gas particle with the surface
atoms in the lattice and among the atoms within the lattice. A one-
dimensional model was used in [5, 6, 7], where the solid was approximated

by a linear chain of quasi-elastically bound atoms, which are initially
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immobile. The oncoming atom moves along the axis of the chain, so that

ghe collision is frontal. Assuming that the force of interaction with the 1121
first atom in the chain is a known function of time, after some transforma-
tions one can obtain a single resultant equation for the relative displace-

ment of the first pair of colliding atoms instead of a system of equations for
motion of the chain. Goodman [8] considered a three-dimensional lattice, for
which he calculated the reaction to a force applied perpendicular to the lattice
surface to a specific (initial) atom. The equations of motion for a three-
dimensional infinite lattice were written analogously to a one-dimensional

case and are solved using the Fourier transform. In the work [9], accommo-
dation coefficients for argon molecules on a cold tungsten surface were cal-
culated. In this problem, the initial gas molecule trajectory had a random

direction relative to the surface.

However, with the use of a three-dimensional model, an analytical
approximate solution {(not to mention an accurate solution) can be obtained
only in exceptional cases. The significance of numerical calculations on an
electronic digital computer increases due to the possibility of creating
model interactions, which in principle would be satisfactory for taking many
interaction parameters into account. For example, in [10], a large volume
of numerical calculations of the classical trajectory of gas particles having
energies of 0.1 ~ 15 eV near the surface of a snlid crystalline body were

performed.

2. Choice of potential. Interaction with crystals

The potential function @(r) = ®, r < g; 9(r) = 0, r > 0 represents
solid impermeable spheres of diameter U, This model is frequently used in
calculations due to its simplicity. However, it gives only a rough idea of
the strong briefly acting repulsive forces, since it is well known that two
molecules repel each other upon approach at sufficiently close distances,
but attract each other when they are far removed. The Lennard-Jones
potential [6 - 12] is a function which is frequently used for the intermole-

cular potential energy

<p(r)=45[(§)12 ~ (%)6] (1)
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This function gives sufficiently simple and realistic representation
of the interaction among spherical nonpolar molecules, and in further /122
calculations we shall make use of this particular potential. The parameters
g and €, having dimensions 1f length and energy respectively, are constant;
they characterize the chemical differences of the colliding particles.
The € quantity is the r value at which ©(r) = O0; € is the maximum energy

of attraction which is achieved when r = ﬁVEwu

In tne case of paired interaction of gas molecules and solids, the
interaction potential is expressed by a single function of the distance
between these particles. In the case of collective interaction (two- or
three-dimensional models), the potential at a given point A near the
surface consists of the potentials of interaction with all the lattice

surface nodes, i.e.,

9 (A) = @(r)) Z oo(r, )
. ol ;4oﬂprp)

p

P(A) = o(rg)+ = o(r, )

Ps qaéO P»q

in the two- and three-dimensional models respectively.

Here ro is the distance to the target atom and p, gq are the
numbers of its neighbors. Without diminishing the generality, but only
for simplifying computations we shall consider in the future, the normal
frontal collisions, and the expressions for potential @(A) will acquire

the following form

PN =0l 42 T olr):

(2)
Pp(AY = (r ) +d 2 o(r )+d = o(r, )
0 p=1 P p>0 Psq
q>0
2 2 2 2 2 2 2 2 i i
rp =x"+ (pa)”; rp,q-z x“+ (p°+q°)a" X is normal with respect to the surface.

However, upon replacing ®(r) by a potential which is

close to the real potential (for example, the Lennard-Jones
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potential) (6 - 12), it becomes difficult to compute analytically the sums
in these expressions. Moreover, there is no need for this since it is
sufficient to have the evaluation of the forces of interaction from the
far-removed surface atoms. Referring all of the distances to the

lattice spacing and assuming o to be constant in the Lennard-Jones potential
and equal to a, function ¢(r) for this potential will be replaced by the

12 *2

6 ,
- 1/r*°, where "% = p?+ s%; r;‘q= p? + g2 + 52, /123
bd

s = x/a is the relative distance of a gas atom from the target, with

function @(r*) = 1/r*

the accuracy equivalent to the value of the constant coefficient.

Thus, at a fixed point A, the potential @(A) is a function only of P
in the two-dimensional case and a function of two variables p, q in the
three-dimensional case. Let us consider the first case.,

If we designate the partial sum of the series f ¥(p) through S_,

p =1 P
then the remainder Rp =¥(p +1) +¥(p + 2) + ... as a result of con-

vergence of the series satisfies the following inequality

[ f(dp <R, < J ()i, (3)
p+1 P

o
where ¢(rp) = Y(p) and f(p) in the improper integral jf(p)dp is a mono-

P
tonically decreasing function of p, which acquires the values ¥(1), Y(2),

¥Y(3), oo when p =1, 2, 3, ...

For the specific case of 2p neighbors surrounding the target atom,
the summed potential is calculated at any fixed point near the surface.
The inequality (3) allows evaluation of the error introduced by
neglecting the effect of the surface atoms which are removed even

further. The integrals in (3) for the Lennard-Jones potential are evaluated

analytically. In the future only the second of these is needed

A p 9p
[ fipydp = 8% _ 3>E_ - -
2

P 256 5!l gs® 10822+ sost(p? + 53¢
_ 63p ~ 63p _ 6% ., P

480s%(p2+sH®  384sP(pZesh)? 2565 0(pPes?)  4s¥(pshH?

s (363 Vaweg?.
8s*pish \8s5 255!l
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During the interaction with the surface, theevaluation of the second
term in the expressions for the potential function (2) is analogous
to the two-dimensional model (q = O), while the last term can be represented
in the following form

z 2 oplr, VYl= 2§, ,.
pe1 l:q-l Psd } p=1 19

In it the evaluation of (3) is valid upon replacement of f(p) by Sp a /124
2
and assuming that the internal sum is calculated precisely. If one desig-
nates the remainder of the inner series by Rq in an approximate

computation of the latter, Rq then satisfies the inequality

S oelr, ) dg<R, < ¢ (r, o)da.
g+1 g

As a result the error increases and for Rp the upward evaluation

will already be valid

oo q
d R_. (4)
Rp<pf[qilcp("p,q)} P+§ q

With assigned p and gq values, with p constant, the Rq value
is estimated. Similarly for all other p values. Summing these upper
limits, we obtain the second term in expression (4). After calculating
the partial sum for q, the integral in the first term is computed by the
ordinary method (it is also possible to exchange the summation and the

integration).

Calculations were performed for the relative error AR in the inter-
action potential as a function of a number of atoms neighboring the
target atom which were taken into account. Some of the evaluations are
given in Table 1. In the three-dimensional model, the relative error
is somewhat higher than in the two-dimensional model, and it is
several times larger for a small number of neighbors, however; the error
decreases with an increase in the number of neighboring atoms so intensely,

that for practical purposes a sufficient accuracy is achieved when an identi-
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cal number of neighbors is taken into account in both the two- and

three—-dimensional cases.

{ 5-0,5 s-10 s=15 s=20
P-4q R - - a
A
L™ 1"_[‘1-«1 SRy ARy, |ARpg [AR,, AR, 12Ry,
1 10,5-100%,0,8.10-*]0,277  |0,434 0,180 0,304 0,268 0,423
2 lp,3-107%10,4-10"%}0,032 |0,047 |0,032 {0,047 (0,073 ]0,108
3 |o0,4-10-¢ | 0,5-106 |0,005 |0,007 [0,007 |0,008 0,020 lo,026
5 :0,3-10-7{0,4-1077 |0,5:10""0,8-10-3|0,7-10~%{0,8:10-]0,003  |0,003
10 {a,1-10 ¢ 10,1.107% | 0,2-107%0,2-10-%0,3-10- }l0,1- 107 [0,1-10-3{0,1 - 10-3
20| 0,4+16-%,0,4-10-1(0,5-10 *i0,5-10"° 0,3-104'10,9-10-0.0,3-10-‘ 0,3-1075

Comparing the results with the evaluation of forces from far-removed
atoms on the surface during isolation of the zone of strong inter-
actions, we note that the results coincide qualitatively, i.e., the
dominating effect in the collision process of gas atoms with the wall
results only from the interaction of the nearest neighbors to the target
atom, the number of which depends primarily on the potential parameters and
for known potentials (including the Lennard-Jones function), taking into /125
account the approximate values of the parameters themselves, does nut exceed
two to three. However, the zone of free motion depends primarily on the
velocity of the oncoming gas molecules [2].

3. System of determining parameters. Formulation
of the problem

On the edge of a surface (or at the end of a one-dimensional chain)
let us select an atom and call it the initial atom. The coordinate
system (Figure 1) will be defined in such a way that its origin co-
incides with the equilibrium position of the initial atom, while the axis
X3 will be directed normal to the surface (or along the axis
of the chain). We shall assume that the crystal lattice is of the simple
cubic type. The interactions between the atoms in such a crystal are
described by a harmonic potential with the force constant #; the magnitude
of the interaction force is proportional to the relative displacement of
the atoms. Let us also assume that the initial atom can be bound to

its nearest neighbors through a potential wl(r), different from the harmonic

potential. This, so to speak, simulates the interaction with the adsorbed

atom. The interaction of the oncoming particle with the initial atom, as
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Figure 1. Interaction scheme:

a- one—-dimensional chain;

b- three—-dimensional crystal model.
well as with other surface layer atoms in the lattice is determined 1}26
by a potential ¢(r) in the form of (1) or by a harmonic potential with
the force constant %O. In the latter case, it is convenient to introduce
a parameter B = %O/K; Yy =B(1 + p)/i, where gy = M/m is the ratio between the
masses of gas and wall atoms. In addition to the potential para-—
meters and the ratio of the atomic masses, an individual interaction
event is also characterized by the following parameters: initial
macroscopic velocity of the gas atoms, determined by the vector 3, whose
spatial orientation is defined by the © angle (with the normal)
and ¢ (azimuth), the spatial position of the gas atom (r, ¥, Y) at the
initial time T = 2 V%7h t = 92, displacement ;pqs and the velocity
3 s of the lattice atoms. The lattice spacing a and the distribution
fﬂgction f(a) for the characteristic velocities of gas atoms are also sti-—
pulated. It is convenient to introduce into the initial conditions the
parameter ao, defined as the ratio of the depth of the potential curve

©(r) to the bond energy in the lattice 1/2 %cz. The kinetic energy of gas

particles will be characterized by the parameter { from the eXpression

Mvg = 2l¢; all linear dimensions are expressed in terms of the lattice

spacing, which in the case at hand can be taken as equal to o.

The resulting system of equations describing the motion of the entire

interacting set of particles may be written as follows:
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After the introduction of the abeve-mentioned dimensionless parameters,

any interaction model can be obtained in both three- and in one-

dimensional form. Here Fp 4,5 is the force acting on the lattice atoms
M9

designated p, q, S.

The value of the parameter | is determined by the energy of the on-

. . . 2
coming atom and for a velocity 6-10 km/sec is of the order of 10 - lO3

when M~ 10"239, € ~ 1071 _ 1072 eV. On the basis of the fact that the /127
bond energy 1/2 %02 is of the order of several electron volts, ao will be

of the order of 10_2 - 10~3. The displacement of lattice atoms at

the initial time may attain values from -0.1 to +0.l1 and velocities which

do not disrupt the intactness of the lattice (the condition of the equality

of potential energy of the lattice bond and the kinetic energy of

the vibrational motion of an individual atom). The stipulation of the initial

conditions in combination with the system of equations (5) completes for-
mulation of the problem.

L, One-dimensional lattice model. Analytical and
numerical solution

In spite of the apparent simplicity and unreality of the one-dimensional
interaction model, it is this very model which made it possible to obtain
the first results both for analytical and numerical solutions.
In references [5, 6, 71, cited above, the one-dimensional model was investi-
gated in considerable detail. The only assumption which was made was
an absence of thermal motion of the atoms in the chain prior to the
onset of interaction. The possibility of taking thermal oscillations

of the lattice atoms into account in a one-dimensional case was

noted in [11]. The resulting system of equations describing the
phenomenon was transformed in the usual way into a first-degree

system, after which the introduction of a generating function of
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the form G(p, T) = I xs(T)ps resulted in xl(T) for the relative displacement
=1
of the oncoming gas atom and the first atom in the chain

equation

I Tl (0 - _
! AL % x, (%) +g_ [ J.Z,E._. xlz=0dt ] G Iy x,(0)

dc? .
- B (—lfljs_s(f)-'[s+1(fﬂxs(oh
s>3

where JS(T) is the Bessel function and xS(O) are the initial atom dis-
placements in the lattice.

In the case of zero initial perturbations, we can apply the Laplace
transform to this equation and all the calculations can be performed
analytically. In our case, finding the reverse transformation analytically

produces an effect only when b (T4 200) ‘F* whereas when 8 = £* it leads
= oap,
(]i}&,)g

far more rapidly to the numerical finding of the original. Thus the original

is computed in a combined procedure; this means that when B > B*, integration/128

is performed in a complex plane along the known contour, and when B < B*

the expansion coefficient AN I xlt—klnvnxl}): S Cysin(2v + 1)8,
v -0

is computed in the form

CO:%~0F1(uh

3]

C.+C =*

1-

0 Fl(.'hf);

e e e e ey,
where Fl(d) is the Laplace transform for xl(T). The velocity of the on-
coming particle is then expressed through xl(T) from the relationship
x(c) - x(0) ffm

T
[ x (nde,
0

while the energy transfer to the chain is expressed in an ordinary

manner.

On the basis of calculations, performed under the assumption of
constant values of the initial displacements and velocities of lattice atoms,

certain conclusions can be drawn:
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1) the interaction depends strongly on the L and B parameters
(with an increase in |y the number of lattice atoms participating
in a collision event increases, while an increase in B gives
the opposite effect); in practice, oscillations of lattice atoms with
number s = 10 no longer affect the relative displacement of a gas atom
from the first atom in the chainj;

2) a characteristic of the interaction of a gas atom with the initially
oscillating lattice is the presence of temporary capture of the gas ~tom
with subsequent reflection of the two - three oscillations together with
the lattice;

3) accommodation coefficients, calculated for the case when the atom
is reflected without capture, i.e., immediately after the first oscillation,
have smaller values than in the case of the same collision parameters but

with an initially quiescent lattice.

Further calculations were made for chains with altered initial
conditions. It was assumed that displacements from the equilibrium position
and the velocities of all lattice nodes are random in magnitude and
direction, however, they are within the limits of the admissible values
for displacements not exceeding approximately 0.1 of the inter-
atomic distance in the lattice, while the kinetic energy during the
oscillations of the lattice atom does not exceed the bond energy. Then,
averaging of the results of calculations with various initial
conditions for a given interaction energy yields the mean /129
accommodation coefficients for normal momentum and energy. The
comparison of the obtained values of coefficients with the available results,
where the averaging was not conducted, show that the effect of the presence
of starting perturbations is preserved independently of the length of the
chain, while the exchange coefficients at various starting conditions are
basically close to the average values. The length of the chain has an
effect on the exchange only at low energies of interaction, while for the
gas atom velocity range of practical interest one can limit oneself with
great accuracy by taking only five of six atoms in the linear model into
account. It follows from the calculations that light gas particles are
basically scattered with low accommodation, while during the interaction

of heavy atoms the coefficients o and ¢ are close to unity, so that at
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low energies capture of a gas atom is possible., In the latter case,
the gas atom may undergo oscillations near the surface for a quite

long period of time or be captured immediately after the first oscillation.

TABLE 2.
. S=6 S$=10
l g | oa - V :
%n o gg;vgf %n o ES;VZf in

g e in Fig.2___ _ . |. _ i
10{0,1(0,01 0,170{0,310 5 0,169]0,308| 5
10/0,3{0,01 0,334(0,556 4 0,32910,550| -
10]0,5(0,01 0,608]0,846 - 0,677/0,887 -
10{0,970,01 0,810(0,992 3 1,000]1,000) 7
10{0,1](0,1 0,288]0,483 1 0,273(0,472| -~
1010,310,1 0,580(0,723 2 0,591]0,832f -
10/ 0,98/0,1 0,966)0,099 - 0,926,0,905| -
1001 0,8 0,1 0,899{0,890| = 0,899|0,959; -
100[0,1|0,01 0,088|0,1685 ~ 0,084(0,181 4
100] 0,5{ 0,01 0,691]0,905 - 0,680/0,858] 2
100{0,1{0,001 | 0,052(0,100| - 0,052/0,101, -
100{ 0,3} 0,001 | 0,240]|0,422 - 0,216 0,431; -
100| 0,5| 0,001 | 0,535[0,784 - 0,530(0,778" -
100{ 0,9/ 0,001 | 0,870/0,983| -~ 0,854[0,979 -~
500{ 0,5] 0,01 0,590/ 0,830 - 0,592|0,837f 3
500| 0,5/ 0,061 | 0,535] 0,785 - 0,537|0,72461 -

The results of the calculations of the energy and the normal
momentum accommodation coefficients for modified initial conditions are
shown in Table 2, while the dependence of the velocity of gas atoms with

various interaction parameters in the course of collision are shown in

Figures 2 and 3.
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Figure 2. Changes of the velocity of gas atom during
Collision with linear chain (number of
atoms in chain S = 6):
- p=0,1,1=10, «®=0,1; 2—p=0,3, 1 =10, OZ)():O’I;B—
p=0,9,1=10, «®=0,01; 4~ pn=0,3 =10, «°=0,01; 5-
p=0,1,1 =10, «®=0,01

v

Figure 3. Change in gas atom velocity upon
collision with linear chain (S = 10):

— }L:O,S, l = 100, 0.0 =0.01;
— =01, 1 =100, «® =0,0L
10, «%=0,01

1- 1w=0,9,1=10, a® =0,01;
3- =05, | =500, «?-0,01;
5 — u:OJ,l

o
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S5e Numgyipa}‘gqlptiogﬂfpr the models of interaction 1}31
with a three-dimensional crystal., Averaging of
the accommodation coefficients

In contrast to the one-dimensional model, the three-dimensional model
of a solid is more complex when one considers the problem of the interaction
between a gas and a surface. This is manifested not only in the fact that
mathematically the problem is more difficult, but also in the complexity of
the construction of an acceptable model for the crystal and the inter-
action potentials with close to real properties. Therefore,
the purpose of the initial work in this area was to calculate the accommo-
dation coefficients as functions of interaction parameters and to compare

them with similar problems in a one-dimensional formulation [11, 12].

Let us consider the case when gas atoms undergo only frontal
collisions with the surface atoms, located at the nodes of a cubic lattice.
A  gas atom interacts either only with the initial atom, or with a
whole set of surface atoms, the number of which may be estimated
by the methods discussed in Section 2. Let us initially consider
the first possibility. The force of interaction of all internal atoms in
the block depends on the relative displacement of atoms while the angle of

incidence of gas particles upon the wall is random.

The dependence of the accommodation coefficients on the nature of
forces which bond the initial atom in the lattice to the neighboring atoms,
was investigated in the following variants of this problem:

a) collision of gas atoms with the initial atom, when elastiec forces
with the constant #, identical in all directions, are operative between

the atoms of the wall from the direction of the closest neighbors;

b) the collision of a gas atom with the initial atom, which is bound
to the nearest neighbors by the potential (1), while

the bond of the remaining wall atoms is elastic.

The infinite system of equations (5) for both variants does not
change its form and the only difference is in the right-hand sides of the
equation. In the solution one can devise some scheme similar to the

successive approximations scheme, based on the successive evaluation of
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the effect exerted on the binary interaction by further and further removed
neighbors. The comparison of these "approximations'" allows the

evaluation of both the qualitative and quantitative effects /132
of neighboring atoms of the corresponding order (with respect to the

distance away from the initial lattice atom) on the lattice

reaction and consequently, on the magnitude of the accommodation co-

efficients.

The system of equations is reduced to a first-order system of
dimensionless form and can be solved numerically. Extensive quantitative
data were obtained from which one can draw the following basic quali-

tative conclusions:

1) in the case of an elastic bond of the initial lattice atom for light
particles ( u = 0.1), the energy accommodation coefficient in the case of
normal interaction depends very little on the energy of oncoming
particles; on the other hand, if the trajectory slopes, the depen-
dence of ¢ on the initial energy will be more clearly expressed; the
lesser the slope 8, the greater are the energy losses;

2) in the case of average | values (~0.5), the dependence on 8 at
high energies is smaller than for the case of average energy;

3) the difference in "approximations' is significant only at low
energies, while in the case of averaae and high energies. the
accommodatior ~oefficient values are close (within 5%);
this is possibly a consequence of the postulated lattice isotropy
and the increase in its rigidity as a result of the entry of a large
number of atoms into motion;

L)} the interaction duration in all cases is inversely dependent on
the initial energy of the colliding particle and increases somewhat for
sloping trajectories in comparison with normal trajectories (by 3%);

5) a significant dependence of energy and momentum exchange on

the nature of interatomic forces within the lattice was discovered.

Even within the framework of the head-on collision, the proposed
scheme for successive calculations during the interaction of more distant
atoms within the lattice allows investigation of the collective nature

of interactions. The obtained dependence of velocity of the oncoming
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particle on time is very similar to the corresponding dependence for binary
collisions. The duration of the interactions is practically unchanged, but
the energy losses increase somewhat. For instance, the increase for py = 0.5
is 18% when t = 10, 2.2% when ! = 100 and 0.8% when { = 1000 in comparison

with the binary interactions under the same conditions.

Study of frontal collisions gives a qualitative picture of the gas
crystal interaction and allows calculation of the accommodation coefficient
only for fixed trajectories. Quantitatively more or less reliable values of
these coefficients (assuming that the model and interaction parameters are
sufficiently close to the real ones) are some average characteristics for all
trajectories, which cross an elementary cell at the surface of monocrystal.
As before, the collective interaction is manifested in the fact that the

collision of an individual gas atom occurs with the whole block of gas atoms.

One would expect that the transfer of momentum and energy of a gas
particle to a crystal in the case of nonfrontal collision will depend on the
initial lattice state to a larger extent than in the case of frontal impacts.
For example, as a result of thermal oscillation of surface atoms, more pre-
cisely, as a result of their displacement from equilibrium positions, the
penetration of a gas atom into the crystal can be made easier. Henceforth,
it is assumed that the atoms of solids at the initial moment have nonzero
velocities and displacements. The assumption that flow around the body occurs
as a monoenergetic flow of rarefield gas is quite argumentative for the con-
sidered interaction energies; however, one cannot state a priori that the
accommodation coefficient is independent of the energy distribution of the
oncoming particles. In order to finalize formulation of the problem, it is
necessary to take into account the distribution of characteristic velocities

in the oncoming stream.

Since it is sufficient to take into account only those gas atoms
which in the initial moment interact with an elementary crystal cell, in
order to obtain averaged accommodation coefficients, the initial conditions

can be tested on some control surface. This surface is subdivided into

139

/133



DUt

cells, the dimensions of which are determined by the magnitude of force of
interaction on an individual gas atom from the direction of the block of
lattice atoms near the surface target point. The dimensions of the

block of atoms of the solid will depend on the required calculation and

the computer capabilities. In accordance with the esti-

mates made in Section 2, in the calculation a 3x3xLk block was used in which
each atom interacts only with its nearest neighbor. The writing of the

system of equations and initial conditions can now be performed quite

readily.

The calculations of the energy tangential momentum and normal momentum
accommodation coefficients are conducted on the basis of the trajectories
for the case of assigned macrovelocities of the gas atoms of a given mass. 1}34
The interaction begins (T = 0) after the passage of gas atoms
through the control surface at a relative distance of two from

the body surface. The distribution of the projections of target

points inside the cell is assumed to be uniform, while the specific target

point is defined by the & and Y angles. The accommodation coefficients for
the trajectory in the case of a fixed initial position of the gas atoms are

obtained by averaging the velocities of this atomn, which have a distribution in

the form of a Maxwellian function

A 5
W o (M) o | = M- 102
fauy = (2—7(”) mp[ SRT ]

The macrovelocity v, at the initial time is assigned

through the ! parameters by the formula V/lao/u.

The number of trajectories which penetrate a given cell is limited
through the use of the & angle and the condition tan & < 3/4, 0 < ¥ < 2m.
After averaging all possible trajectories (or target points)
accommodation coefficients are obtained which characterize energy and
momentum exchange between the solid and the beam of gas atoms with the
stipulated macroscopic velocity.

A change in the parameters ., QO, 1, 8, & does not change the compu-

tation scheme, while a comparison of the numerical values of the obtained
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coefficient o, O s an established the dependence of interaction on these
parameters. The average accommodation coefficient values for tra-
jectories are calculated from 125 points, and the number of all

possible trajectories in the cell depends on the parameters of the given

variant, as many as 50-60.

In calculations, the following values of the parameters were used:

U = 0.1 - 0.3; o0 = 0.013 1 = 10 - 100; © = 0° — 70°; & = 0° - 360°;

8\/ékT/M. Limiting the choice of the & values only in the first

quadrant can be justified only for not very large values of the 8 angle (up to
30° - 35°). In this case, as control computations have shown, the inter-
action scheme possesses almost central symmetry. For values 6 > 35°, the
accommodation coefficients exhibit a strong dependence on the azimuthal
angle ®. Figure 4 shows the dependence of the coefficients ¢. a7, o, on 9
respectively within the limits of one quadrant for a fixed

value 9 = 35°. Curves 1 and 2 were constructed for the values p = 0.1,
and curves 3 and 4 for the value p = 0.3. The values of parameter | are
also limiting, !t = 10 for curves 1 and 3, and | = 100 for curves 2 and &.
let us note that the dependence of the accommodation coefficient on the /136
initial energy is not the same different values of the mass ratio y.

For example, while for p = 0.1 with an increase in the initial energy, the
energy accommodation coefficient decreases, for | = 0.3 the dependence on
the orientation of the initial vector 3 and generally for almost all & and 6
values the coefficient ¢ increases with an increase in the parameter 1. The
control calculations give similar dependences for y > 0.3. The coefficients
o and an are more complexly dependent on { and y, as can be seen

in the specific case shown in Figure 4. The decrease in the coefficients g
and o, with an increase in the 8 angle is quite sharp; when 8

changes from 0° to 70° the decrease in the magnitude of the coefficients

is approximately one order of magnitude (Figure 5). However, the computed

o & and o values for large 8 values must be viewed with great

caution since with an increase in 6, the computation error also increases.

Thus, the qualitative picture of the calculated changes of energy,

tangential momentum and normal momentum accommodation coefficients, taking
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into account the collective nature of the interaction and averaging for
the target points, differs somewhat from the similar picture for

a collective interaction, but in the case of an individual trajectory
of a gas atom [12]. However, for small 6 values, the average
accommodation coefficient values even quantitatively are closer to the
corresponding values in the case of paired interactions at the same
potential than the coefficients obtained in [12]. With the indi-

cated interaction parameters, the average interaction time is
practically independent of the selected combination of parameters. In

addition, accommodation coefficients calculated for the individual tra-
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jectories do not have a large scatter caused by the presence of the character-
istic velocity distribution of incident molecules, as one would expect in the
case of velocities of the order of the first cosmic velocity. Let us note,
however, that with an increase in the 6 angle, this dependence becomes signi-
ficant and apparently for sufficiently large slopes of the incident beam

(s Z'7O°) the accommodation coefficient correction will be comparable to the
magnitude of the coefficients themselves.

6. Some Additional Remarks. Possible
Improvement in the Accuracy of the Results

The theoretical interaction models which were proposed and considered above
are obtained by the varying following principal properties of solids: 1)
dimensionality of the block of wall atoms; 2) dimensions of this block; 3)
initial state and the form of interatomic bond within the lattice and also the
properties of the gas molecules: 1) form of the velocity distribution function;
2) possibility of nonfrontal collisions; 3) type of the interaction potential
between gas and solid atoms. In comparing the various models it appears at first
glance that the one-dimensional interaction models are weaker than others, at
least until there are sufficient experimental data which would enable some
rehabilitation of these models. However, despite the artificial nature of the
one-dimensional interaction model, a comparison of the calculation results with
three-dimensional models shows that the principal qualitative dependence of the
energy and momentum exchange coefficients on the initial state, the type of the
interatomic bonds within the lattice of the solid and the type of the inter-
action potential between gas atoms and the wall for these models are very close.
The advantage of the one-dimensional problem is the simplicity of formulation
and calculation. It is understood that everything said above refers to frontal
collisions normal to the collision surface. Therefore, in those problems where
various angles of incidence of the gas molecules are considered and nonfrontal
collisions are allowed, it is necessary to take into account the three-

dimensional nature of the crystal with which the interaction takes place.
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A study of individual trajectories is sufficient for determining the
qualitative picture of the interaction, however, it is the quantitative
results which can be obtained by averaging such parameters as target points
and characteristic velocities of gas particles which are of interest. The
first of these parameters for the accommodation coefficient was averaged in
[13]. A block of atoms of solid was considered which contained 59 atoms,
with normal crystal structure of various bodies and it was assumed that the
thermal oscillations of lattice atoms can be neglected. The dependence of the
averaged energy accommodation coefficient ¢ on the energy of the incident
particles 1, on the form of the potential of interaction, and also in a special
case on the angle of incidence 6 at values up to 45° was obtained. The cal-
culation scheme presented in Section 5 for three-dimensional problems allows
somewhat larger value of the 0 angle, and also the possibility of taking into
account the characteristic velocity distribution for gas molecules, so that
the computation of the averaged values of the accommodation coefficients no
longer presents any great difficulties, regardless of the choice of the inter- /138
action parameters (including the type of the potential and the crystal
lattice). Only for the large angles of incidence should the above-presented

calculation scheme be somewhat altered in form.

Considering the large volume of calculations which must be performed for
each set of parameters, and also the strong dependence of the coefficients ¢,
®ro & on the target points in comparison with the dependence on the character-
istic velocities of gas atoms, it appears feasible to average the characteristic
velocities only for large 6 angles. The complete qualitative (and also
quantitative) picture of the interaction in describing the phenomenon at the
level of accommodation coefficients may be determined only after detailed
calculations by the above-indicated scheme for the most complete possible
selection of the interaction parameters, followed by subsequent comparison

of the results with the experimental data; this is feasible using modern
computers.

In the above-considered methods for modeling the interaction of a rarefied
gas and a solid surface, it was assumed that the surface is clean, i.e.,

there are no adsorbed atoms. It is true, however, in the Section 5 a possible

variant of the interaction was considered in which the bond of the terminal
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atom with its neighbors is formed by the same potential as the interaction

of a gas atom and wall atoms. Assuming that the mass ratio of gas atoms and

the initial atoms (M/mo) is equal to unity, it is possible to simulate to some
extent the interaction with the adsorbed atoms (or even with minor modifications
of the scheme, with the adsorbed layer). However, this scheme is too idealized,
since the real structure and the forces of interaction with the adsorbed

layer are not taken into account. Apparently, in addition to improvement in
the scheme of interaction with the adsorption layer, it is necessary to deter-
mine the interaction potentials more accurately, which until now were selected
for theoretical models either intuitively, making mathematical convenience

one of the primary criteria, or based on nonrigorous foundations.

The second assumption which was made for the interaction models, is that
surface roughness is absent. In the literature there are a number of works
devoted to taking surface roughness into account in interaction problems;
however, in these works the attempt is made to either construct a rough surface,
or the interaction with this rough surface is considered with stipulated values
of the accommodation coefficients. This complex problem still is unsolved. 1}39
Let us note that taking the surface roughness into account in the theoretical
computations of momentum and energy exchange coefficients is the most important
refinement in the problem of interaction of a rarefied gas with the surface of
streamlined bodies. However, the final choice of theoretical models can be
made only when the possibility of testing at least some of the assumptions

will become possible in a reliable experiment.
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TRANSFER PHENOMENA IN REACTING GAS MIXTURES

B. V. Alekseyev

The theory of transfer phenomena in nonreacting gas mixtures
whose molecules can be viewed as point force centers has already
been developed in great detail [1, 2]. The transfer coefficients
in the reaction media may be obtained from the ordinary formulae of

< ~
€* /KT >1, where ¢* is

the rigorous kinetic theory of gases when e
the chemical reaction activation energy. However, at elevated
temperatures or with sufficiently low activation energies, the number
of molecular collisions which lead to chemical reactions may reach
the same order of magnitude as the number of the elastic collisions.
In this case, the formulae for calculating transfer coefficients in
nonreacting gas mixtures does not apply. In this work we consider
transfer phenomena in the reacting media. The notation used has

been selected to correspond as much as possible to the system of

notation used in book [2]. All new designations and those which

differ from the notation in book [2] will be identified in the text.

1. Dynamics of Paired Collisions

In a mixture of gases consisting of (¢ components, let a number 1
of bimolecular homogeneous reactions of the following form take

place:

L L
nov, A+ 0% vﬁ,/\ﬁ*

1
vo. AL+ & ve Ag,
L yrty 5.1 Sret d

wr o8

“ p=1 Y

i M E

where Vor? Y Vg, are stochiometric coefficients which can be

s Vi, s
r Yr
either zero or one. Components ﬁy, AB, Aw¢ AB’ which possess identical
chemical characteristics (and consequently identical molecular weights),
are considered different if they have different internal energies ea,
35, €y, 66‘ Molecular collisions in which no mass or internal energy

exchanges take place are called elastic; all other collisions are
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inelastic., Let us consider an inelastic collision, the result of which

is a chemical reaction:

Aa+AB~)AY+A8¢ (1)

Nuclear reactions are not considered here; therefore, the law
of conservation of mass holds:

Hnﬁ=m +m6. (2)
The law for conservation of momentum is as follows:
maﬁawlp%:mﬁ; +m§|7é =(t o + M1 ﬁ)é - (mY +m 5)6, (3)
where G is the center of mass velocity of the motion, and
prime designates the characteristic quantities after the collision.

Utilizing equation (3), one can easily obtain the following relation-

ship:

where gB , for example, is the initial velocity of molecule B relative
o3
to the velocity of molecule . The law of conservation of energy is

as follows:

1 2.1 1 .2 1 2
€ +8p3 2"’a”a+2”'3”(3’5 +86+2 Y Y+_m5U5 . (&)

Consider the law of conservation of energy (4) in the form:

n-n = Ey*+E5 " 8q ~Ep>

(5)

where

MoMg 5, . MyMsg 5

_2(ma+mp)“g°‘(3’ 2(m +mg) YO

are the kinetic energies of the relative motion of molecules prior to
and after the collision, respectively. It follows from equation (5)

for the endothermal reaction ((-:Y+ 66>€Q’+ eB) that the kinetic energy
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of the relative motion of the molecules ﬂzey+€6-ea7es>0; in the case /142
of exothermic reactions, there is no such limitation on the initial

kinetic energy with respect to the motion of molecules. Let us designate

Y8

1 th robabilit
ap(gapx 0, o, plane) e probability

r
by dwP is the position in the x2x3
that a molecule of type B, after collision with a molecule of type o,
will fall within the solid angle w, dw; the following reaction will

take place:
A(1+1AB ~Ay +As,

which will be designated as r (Figure 1).

L3

Figure 1: Coordinates which are used in considering
e .
inelastic collisions of molecules.

Assume that, upon collision, the principle of macroscopic reversi-

bility takes place if the probability distribution densities éYG %“ﬁ

of? "y
for the direct and reverse collisions are related by the equation:
I v5 >
3uglop b sinodody dbde dv, diy -
P = S
= gYﬁpYﬁ b’sino’do’dg’db’de dedU5 . /143
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Appropriate choice of a coordinate system always makes it possible to

achieve the following relationship:

do = do’,

and, consequently, the principle of macroscopic reversibility can be

reduced to the form:

r B -> -> s r’OLﬁ PRI P =2 Ped
gOBPO:3 bdbdadumdup = gYsPYG b’db’de de dvg.
Remark 1: As a result of collisions of classical structure-

less point particles of types o and B (with masses m, and mB), let
reaction (1) take place, forming particles of types ¥ and 6 (with masses
m,Y and mé). Then, on the basis of the law of conservation of momentum,
it follows that the whole collision process proceeds in one plane,

and the impact parameters before and after collisions are related

by the formula: )
mmmﬁbgOLB = ”’Y'“ab Fys

If the collision of particles takes place in one plane, then geometric
parameters € and €' may be selected equal. It is possible to

show that in this case the following formula holds:

my Mg G I’D,aﬁ
m_m of = YB
o B

. (5')

However, it is well known that the bimolecular reaction is a
complex reaction which involves the formation of quasimolecules
(activated complex). Apparently, during the destruction of quasi-
molecules, the particles which are formed do not scatter in the same
plane in which the collision took place. Formula (5') is therefore
of little use. At present, the values of the probability ;Js
for chemical reactions cannot be expressed as a function of angles
] and ¢ . Therefore, in calculating the collision integrals, we shall 5}44

hypothesize isotropic scattering. Specifically, we shall assume that
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during the destruction of quasimolecules, all scattering directions

for the escaping particles are equiprobable.

2, Ensgpg Method for Solving the Boltzmann Equation,
Taking into Account Inelastic Collisions

The Boltzmann equation may be written in the form

é.)f_c_‘_ LD ?ia_ P F . 0_f9= %f& + fa_e_fi
at «’ S a5 gt at ’
ar ava el r

where

a&‘f\l 1 l, N N rp, rYS . T >
) :é-ril ﬁtﬁ;ﬂ{(ﬂ}[b-gﬁanﬁPaﬁsnnobdod}dodeduﬁ‘

Let us consider a hypothetical problem for which the two collision

terms on the right side of the Boltzmann equation have the form

el r

where 1/€ and 1/8 are measures of the frequency of elastic and inelastic
collisions, respectively. When 1/8<1/e, the collisions resulting in
chemical reactions are much less frequent than elastic collisions.

It is possible to show that an additional scalar term appears in the
first approximation of the general solution of integro-differential
Boltzmann equations. Excitation and initation reactions within the
framework of this approximation were investigated in references [3, 4].
We shall consider another limiting case (1/6-1/6), which takes place,
for instance, at elevated temperatures when € %kT (€* is the activation

energy of the chemical reaction).

Let us represent a distribution function fy in the form

~ ok .
fa= 1.«);0E fa (=1, ..oy )
(0)

For the distribution function fa we obtain the equation:
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(6)

From equation (6) we obtain a Maxwellian distribution function for

the system in equilibrium:

2
(0) % - loa
m
fo =n (—=_| ¢ 26T (7)
ankT

The Maxwellian distribution (7) corresponds to the following system
of summation invariants:

2
V mavg s e
My s Mo Vs 5 o *

Remark 2: For the summation invariant nTa (nTa is the number

of atoms of type T in a molecule of & components, whereg = 1, ..., ),
from the hydrodynamic Enskog equations one can obtain V diffusion equations
for a chemical element [5]. However, these equations will not be new
and independent, since they result from | diffusion equations for

the components. Therefore, ng, is not used as a new independent

invariant.

In the first approximation the Boltzmann eguation has the form:

(0) 0y 9 (0) H (0) .40) , B
ig—*i; 'af-ya +Fa"i}"= B .Uffo. f] (¢a+®]’_®a
dt * ar W, J=1 8)

l (0)

j (0) ,
o) -> 1 i . L. - -
"@]) 80‘] Pa] b(ibd dej + -2‘ % Z [f”.f fCl f] (@Y +%5 o

r=1 Y8
ry8 d” 1 )
i v (O.— eeey H)e
—q’ﬁ)gappae sin ebdbdededqdvg, ,
An additional condition is written in an ordinary fashion: /146
(0) -
[fy &, dv, =0;
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> - 2z >
S;mu{(u,l— V) fa @, dv, =0,

The operator o - of > df

for the distribution function f ( has the form

(0) « R )
) (o} Ry L -2y z:m-K(~0)/l\!- PV W, -

D. f=fo_{'h';' " (‘ 3 e TN i o. o

- - el ~

_oNdn T oy ad oW W, g
2/ 97  Ma ar
v - vl . :
where | W, is a nondivergent tensor W W -zW U ; K& is the number

of type o particles formed per unit volume per unit time at the expense

>

K, - f

of all homogeneous reactions f
€% g
dt

o’

A I
U, is the thermodynamic internal energy per gram: [[. = VL-/'Z+ £, /M.

(0)
In this case Kd = 0 and the operator D (0) has an ordinary form:

N > - I g 9 =
R R AT AN

ar o

where

pe n Pe\al P d K it
‘ d .9 () (> Ta\dnP _ Tul F _ % F. .
| * a?("a e ) ar e |PheT D Pit)

The general solution of the system of linear integral equations (8)

may be found in the form

» g1 J = * *U).*
@a:_<A. ’l>_3a;_?vo+n'2 o d.. (9)

ar d =1 !
Substituting @a from (9) into equation (8) and equating the coefficients,
we obtain a system of integral equations linear with respect to functions

3 0
A,B,C(J):
¥ o o
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of 0) l -
_A P 1 e res
Woj fo f; 8o bdbdedd v grflpgamﬂ(AYH@s_
(o.0) I (10)
-A ——Ap)f fB gaﬁpaﬁ Smebdbdodadcpdvﬁ,
(0)2,0> W
2 W W -2 ’+B — _ (0)(0)py *f
fa 2 I BLaB] B Bf TR g x
- 1 1 .
Xbdbded”j*‘grflﬁisfffff(BYﬁtB's—Ba—
(0) (0) Y5 (11)
-8B )f fﬁ B SmOb(’dedadcpdvﬁ,
(0) ’ —’ s >R -
f Vo (8- %1)* z m(C ](h) -cm - c‘k)
2 (k) 2(h) (k) " (0) (0}
-C, C +C )f f Pa] 0L]bdbdz-:dl) +
l I , ”
1 2 (BT (R S(B)T (k)T (k) a(h)
(12)
2(k) 2k (0) (0)
Ca +Cﬁ )f fﬁ aﬁ chvﬁslnebtﬂ)d.z-:dcpdedl)ﬁ
One can easily determine that the following conditions for the solution
of linear integral equations (10), (11), and (12) are fulfilled:
2. ff ( Wi) Voc"uocdvoc =
: WOy, 4V, -
2 u( _Sak.)frcx Vov.l‘?o.dvoc=0'
Integral equations (10)-(12) may be written in general form as follows:
hE) LY I Y ST YA (h/) (0) (0) 148
Ro' =2 fIf (Tg +T; - o ~T; Mo f;
i > l k hik)
<Polg, bdbdedi ol & ppgpryt T" -
r=1pys

_ngkuT(“ )f(O)f(o) aﬁgaﬁsinobdbdoded@dﬁ'ﬁ; (13)
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(w I ERATA i,
(1 ,71; fo Vo (6648 o) E(:)— 62”
(12) ~of Wail, B,

Additional conditions for equations (10) and (11) are as follows:

5 VI, ra® e

There is no additional condition for equation (12).

3. Variation Principle

Before using the variation principle to find an approximate solution

of integral equation (13), let us prove several integral theorems.

Consider the expression

.y (K - _ (0) (0)
] %a?ysf[ffffK“'[KY+K6 Koy —Kglxf, fo apgaﬂqm obdodbdeddv,di

67

_’
where KQ, for example, is a tensor function dependent on Wa. Indices
r, @ B, v, and § are mute. Replace index ¢ with Y and index B with
8§ . We then obtain
]~z MK, : K, +K K Kg 1 L159
= b . IK” + K% — _ x -
P apys DRy e B~ By~ Fe (14)

SN Yfgyasmebdodbded(pdu a7, .

Utilizing the principle of microscopic reversibility in the form
r

op o
Py 8yg sin obdbdodedodv, di =
(15)
: ’ Y8 I e -
=~ PLp 80 psinebdb’deds"dy'dv di;
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and the relationship
A0) (0} (0) (0}
i, fﬁ = fY fg o (16)

Substituting (15) and (16) into formula (14) and considering collisions

Y+8 reversible, we find
I=§agwyﬂmky:ma+K§—K;—Kg«

(0) TYd »
x fa f(ﬁD)Paﬁ go’hﬁbsinGdbdé)de:dcp(117m1:111‘3 .

Thus, the follewing formula has been proved:
, , (0) (0)T YD .
)E aﬁzya -U‘HTIKOL: [KY+K5_KOL—K?>]fO( fﬁ P(X.ﬁ gaﬁbSU]eX

xdbdededcpdﬁad—l;‘3=——}] g)ﬁffffffK;:[K’Y4.K%_Ka_
r ofy

() (0)] Y8 I
"Kﬁ]fcx fﬁ Pas gapbsineddededcpdvadUﬁ-

Substituting o for B, the following formula can be obtained

TYS
2B KK, +KpmK = Kalfo ) Po'g 8o pbsinodb x
roapyd
> i e s (17)
"dOded“’d”ad”ﬁZ?ag:YsmmKB:“\YJrKG”I\a”

(0) (0)7 Y8 v g
_Kg]fa fg chp gapbsinOdbdodsdc-,;duadvﬁ.

Replacingy by B andyY by 8 and utilizing relationship (17), we obtain /150
(0).(0)y " Y3 i -
”‘mil.Ka:['K:{+K'5—Ka—Kﬁ”q 'fB Paﬁ gaﬁbsmodbx

Y
2

)
£Yd

%
r &

x dOdsdq)do’a(ii;p =—-}r] aL‘;YﬁﬂTr”K%: [K’Y*'K%_Ka_

(0) (0) [ Y8 ) T
~Kglf, Ig Papgapbsmodbdodedcpdvadus.

Let {K,K ¥ be the operator
IKKY - - 2 aélyﬁmm(KawhKp)‘:(K'Y+Kg—KQ—KB)x

"y6 . v dv
<1915 P oplapbsino dbdodededuy dvg,
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r 1 -~ L) T 4
then tK, K} == >;'aéstﬁfﬁ‘(a:(KY+K'§_K(1_'K3)X

(0) (o) !
xfo fp o.p gapbsmedbdodedq:dv dvﬁ.

Consequently, ; , i , ,
K, Ky =12 = qrfriKy + Ky - Ky - Kgl: (K + K —
r afiyd
) (0) ] . s
T apgaﬁbsmodbdededcpdvadvp.

Since the possible form of the tensors Koz’ KB, KG’ and K'Y is a dyad,

then (K,K}"

(18)

r
Analogously, if !K,L }is an operator

KLY == 0 [ (K #Kp) (L + Ls = L~ Lig)x
r ofys
n xf(O)f((,O) 0Logo,;bsm()dbdodz;dr,zdl) dU(g!
en
r R L , [ _ (1! 2, 1. —
gL - % i Ky + K — Ko =Kp) e (L vl =iy

K

(19)
(0 (0 ] ebdbded.dodv_di,.
f’f f@ uﬁg“psm l ST

From relationship (19) it follows that
K, L}" ={L,K}",

Let us now assume that we have a tensor function ta(hk) which

satisfies the equations:

(IR ik My | R
R - I (S

! (21)

hk
i L

fa

(hk) (hk)

“ly ~t; gy wbdbdedv dv + %L

-<L"J

£
REY L (hE) Chky (1;/:) (0 (0)
:(tY +ly =t M & fﬁ @ga{,b&.mOx

x dbdodedydv, dig .
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N3]

) LAk :
a}{ ffff(t(of’k)ﬂ(jhk)): SRR hky (hk)y _(0) f‘”

e

(bl

t

o

- T

Let us biscalarly multiply integral equations (13) by the trial
tensor functions t (hk), and integrate the obtained binary tensor product
over all values of 3 . Then, equating the right-hand sides of the obtained
equation to the right-hand sides of equations (21), we can sum for all
of « @=1, «oe, u)e If one also takes relationship (17) into account,

we obtain

(tOL +t. -t _ t]. )fcx f P bdbdedv dv +°

] o j

(/zk) (}l;.-) ,(hE) (hk)

S +ig Dl ey

£152

(hkY  (0) 00" Y8
e Mo fs Py 8y gbsincdbdidedydy | dv ,
~ (hh () (hk
. % ) LUk LUhk) 3
& i L) (T, + T ' _T<O/:A)
hEY O (0) (o) o
— ’I ) e g
j )fa ,j Pa]. gajbdbdaduaduj +

!
1 g R (k) (hk
ty X % L) ik (hk
DR apys e,y fg );(TY + TS %)

(0) (0)

(/r/r) ‘(/1/)
-T
o3 f f 0‘3 gapbmnOdbdodbdq,dp dv[3

When the operators are designated by z % %}' then

h hk
f(lk),l(h]‘)(+;—n(h“ (L)
(22)
(hk (hk ht (hky  r
HTAE S TS ST

Utilizing (18) and (20), we obtain from equation (22) a variation

principle in the form

(hik)y (hk) 1Y/
N B R R T

s -

(hky (hk ;
AT LR by

The best approximation is achieved when

(hk) (hk))dﬁ

f)z,[(t : Ry =0,

o 8
and the equations which impose limitations on the trial function have

the form:
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(hky |, ARRY O RRY o py

(Rk) (hky, - .
(ty "R, )deL:;,fta D (t, +tl. -ty -
(hky _¢j (0) (0)
_tl, )PU-f fa fl bdbdadu dv +
4 (hk) ,Wf) LREY (kR
I [CP S UL C R
(hky _(0) ()7 Y&
'—'tﬁ )ra f'o' PO.F qo[,bsm()dbd()dFd PdU quc
-»
Let Gij’ pij be some tensor functions of velocities Wi, WJ.. In that /153
case, the equations in braces are defined for elastic collisions in
the following form:
G Pt G (0) _(0) ij , (23)
ijrlij Yy W G ; ,,lf f gijbdbdadv,-dl;j.
Let P P P P, be t f t f ti W —. _M’T -‘5
e 2 B By Ps e tensor functions of velocities s B, v Yse
Then by definition the bracketed expressions
for inelastic collisions will be as follows:
PP 1 Py P Y P Y0 b
P> &]f‘ﬁ Py afa fp wp 8o plSmOx (24)
x dbdod e dodv, v ;
(0) .(0) [~
.Pa,P ](,{; ”ﬁ”P f fﬁ I)aﬁgagbxlllox (25)
« dbdudtdq;duadl;ﬁ;
3 r - > (0)) ; (26)
Pon’ly]o.ﬁ'—”f”f,a: f f(% }N,, :Bbs-nﬁx
x dbdedsd(,,difadu’ﬁ;
A _ (0) (0) .
Py Pileg= — (MMM Py :PEf g P a@ gaﬁbsumx
. (27)
x dded &,d(yqudl}B .

Remark 3: Assume that for the reaction to occur, molecules must
collide, so that collision parameter b changes, generally speaking, with-
in the limits zero to  , _ .o "B (0, Oy are the diameters of

Ckﬁ 9
molecules of types o and B). Integrals (24)-(27) are therefore finite.
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Using definitions (23)-(27), we obtain 1}54
ff;bk) : R ;"&) dJa+ iéLl n [tfxllk), t(ahk) &j *+
+ g Mot [t(hk),t(.hk)], o+ L zl: 5 [t(hk) (hky 7
j=1 772 Bys fo log +
+%,él pgsnff’””,c‘p"’”lw él 2y tglk),t;(ﬁk)];(ﬁo.

We shall take the final combinations from Sonin polynomials as trial

functions ik £y
(hk) -
M N 4.2 (m), 2
* * m=0 tam (g)s” (WOL ).
Denoting
(hk) (hk) (m)
Ram =Ry w8, WHaV;
hk
g(l)==E ZQRMM.
o, m

Then the formulation of the variation principle will acquire the

following form:
g g o,
If we denote
w(hk) E;l (k)Y (hk) E-1 E~-1 bl (b
= +2 X 2 H_H
) m=0 wmeen j m=0 m"=0 alltam“am'x
(m) 2 ( 9! Lk
X[WO‘S" (WOL)’ WOL § (Wa)]a] ( ,)[ S("I)(W ),Wx
]m
(m") l E~1 E—1
xS, (W )]a,“ 5 % x t(hk)“(hk’)x
r= 1 BYS m=0pf_g - am

, (m") (m) 2
x[WOL (W Y W, S, (W ﬂaﬁ-k% [WaSn W), W x
(m”) (m"y, .2
xS (wg)lapwt [w s "ow %, vy s (W Mgl
then the equations for limitations on the trial functions 1955
will have the following form
wg:k)

=0.
(28)
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(hk)

We find the extremum of g¢g by means of the Lagrange multipliers:
agthi) it gw P (29)
— + n oa - P___9
0‘:(1:/:) p=1 pat”’l‘)
o m aom

It is possible to show that the consistency conditions for equations

(28) and (29) are
)\(/l/t) _

p 1, p=1,..., we

If we denote (m)

(my 2 (m") 2
2{3<nanl 18,8l S . (W), w,S, (\Va)]aﬁ&ﬁl_{ivasn x

! (m) 2
2 1 ,
(wl)]al}+'2"Y25 rE]xBQﬁ[W&Sn (Wa)’ W %

(m”)

n

« W2y, 1, S

{m

o2 (m) 2 (m” 2 r
SN oy LS, W, S TG +

(m”) (m,m")

(m 2. P2
+28{3Y[WQS'H W), WYS" (WY Nt =Qaﬁ ’
then finding the expansion coefficients th is reduced to solving
the following system of algebraic equations:

v E-1 (m,m”") (kK (hE)
N N s = .
Zl m’=0 <P pm "

L, Computations of Bracketed Expressions

We shall now assume that the probability densities of

. . s s % . s s of
inelastic collision PY and elastic collision P depend only /156
o uf -
on the magnitudes of the relative velocities of the colliding molecules
r
QQB . The probability densities p Y3 P“ﬁ are averaged over all
aB? ~8

possible orientations of a pair of colliding molecules; the possibilitv

of the integration for ¢ (from O to 2m) therefore immediately arises, since
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the integrand is not dependent on €. In accordance with the first theory,

we shall assume that the probability density Pij of the inelastic
&
collision is equal to a constant 6Y5 , when the total translational
of

energy of the relative motion of molecules o and B is greater than E*;

otherwise, ﬁYs is equal to zero. According to the second theory,
ap
r rys
probability density PY8 is equal to a constant P;; when the trans-
o

4

lational energy of the relative motion of molecules along the line of

centers is greater than E*; otherwise, Pyﬁ is equal to zero. As
ap

would be expected, the '"elastic' bracketed expressions are expressed
through the collision integrals in exactly the same manner as in a non-
reacting mixture of gases. We are therefore not presenting the elastic

part of the expressions within brackets here (see [1, 2]). However, the

form of the collision integrals itself changes:

8y, _ .
( } i] g;] or+2 (l)d
(T)=\F_ f € 8 8ij»

where

gﬁ,),m cos A)P g, jbdbs

. Ty, Mi.‘vi]-
gij = 81'- T 4 ¢

2k T

Let us now calculate the '"inelastic'" bracketed expressions.

1. Bracketed expressions of the type /157
ooy g2
s, AV EPUMENELSE
1 /2
’ (30)
(0) - - Y5 . N -
f fﬁ W Vfgpap go()bsm()dded&;dq,duadl)ﬁ.
One can easily see that expression (30) is a coefficient of sP+? in

the expansion of the function

~-% - 1—s 1t

T (s e e ¢ x

- r

W oer W P gy pbsinodbdod cddi, di

Expanding the integrands into a series in terms of s and t,

we obtain
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(p) p+‘/2 q+x/2 rYa
[S;,/z (W )W S (Wﬁ)Wp]aﬁ—Bn anp MO(. §qurQa‘3(r))

where

¥8 * oo 2 TY5
Lty v ] e e ey
g
op

ryd 5
24p = JIf Py 8, gbsinodbdodo.

Coefficients qur are found from the equation

(1) (p+q)'(r+ +p+£r___L
2r
Z:Aqugocﬁ"Z (é—gi‘3+r) -?ﬁ pq—r

2 r(p+q-nipig!

Summation from the right is carried out under the
following conditions
P20, 920, r<p+gq.

As a result

o

LW, Walpg= BM Mg < 50~ %(1))11&%;

aﬁ"

-

Lno 2 ey
[Wa,b,A (W(_;)Wﬁ!ap
avg oy e [15 T yb T 5
= 8MM <_L—)Q:~ﬁ(0) -5 (])+52YB( )>n ng;
LS W )W 9]

h A Y5 rybo ryb
BV M, <1 2, 5(0) - 50 ,Jvﬁ(x)uzjﬁ(z)> ion

't

(S, (oW, ux‘,;n’vﬁ]’c,_ﬁ < B M ) <‘_gi oY? 3<0>

_ 105 Y8 21

"YB rYS .
Qg (e 5 Lap(2 =@ o3) Mol se

2. Bracketed expressions of the type

(M2
s, (wlnva,s SURLAN mms Pty
.8 (w SLA .)[(;) e Gubsinedbdad s dedd,dv, |

(31)

(32)

/158
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By expanding the integrand into a series in terms

of s and t, we obtain

(2 2
s Pal st (u W, 170 = 8, nszAh Yo,

£,
where “p

o
d.l”j-e i/\hgaﬁ;
2
g,
c T . RN 2
L YoM, rea My v Mr) X
o\ = v ’
ey B2k e mepeg, PRV A

S '

- PR R —
m

= ep q— r—knn)'

(r+%{h—l)/_tzle+2r—p—q)!

Y N N I PRI S T

Summation is carried out under the following conditions

m~0, rxm, peq-2r—kem>0;
kv 2r—p—q-m:0, rek>p, rek>q.

r 6
Collision integrals ”‘I{%Ul) are determined from formulas (31) and
(32). The bracketed expressions of this type which are necessary for

the calculations of transfer coefficients in the first approximation

are:

-» ~» . r 8 r 8
[Wl, W;.. ]_:ﬁ = 8"0-"6("_:" Maszgﬁ(()) ¥ ,\.1{39,1?'( ])) ;

; NI
W s (uw g - 0 S, (W)Vlﬁx

=8n nq[~ M 1ﬁs>aﬁ(0) 2 MM~ )zlg(n_M;{zgg(e)];

[S(!:)(Wi)‘?u,s (W )W ]aﬁ— 8n nﬁ[—-M (M — “ﬁ +

(\Q‘JI

- 1g> 20+ 663(\1(1_‘1 Y ‘fﬁ+_\1> SHOE

2 r'yb 37 y6
+Mg( h7_7Ma—“Mﬁ>szlﬁ(‘2)+Mﬁszlﬁ(:%)].
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3. Bracketed expressions of the type
.2 P, 2
ls‘”nv W, s W AL = 1T S, W) <

() 2 (0) (07 y >, _ g
\:SZZ(WYZ)I [y P IEW - g, gbsinedbdod ededd, dvg »

The bracketed expressions of this type can also be obtained by
expanding into a series of terms in powers of sptq. We then have
Y&(
AN ) h
Sy W, 8, A gy Mgty Ao (s

where
2
“8ua

.3 o
) = @ » X ’{) nd ey f
Pyq [k A//l"’ar'-)(é’ﬁg_'ng) .

) can be found from the formula

(¢} ici ®
oefficient pa (and consequently Afh

2 ,
_gcc{‘} N 3 > >
Dg =€ % rrm+n+f—g5a‘g
Pq .
rmnikl

2r , o m..n 3mi-"/x+"l+”l‘+ll+l—-p—-q+1
F’f,;lt.;(iw’ga 5) (=1

e
n1!(‘>r+21n nvivkelop—q)!
‘ ”P“/—r”'”""”‘“k—l(2rwmxn+k+2l—0*q)‘
' (p+q—r—‘>m—nﬁ1—k—l)'k'(n— il i)
m - m m m .
p—L-—7 5 —m—itq .
(r+nz+n+—g—+l—) Mg MM (Mp-M )t 33)
x Voo o R —— .

(r+m+kal—p )‘ir + m+n+l—q)'

Summation in expression (33) is carried out under the conditions
a) r»0, mx0,n0,i>0, k>0, 150, kgn, igl;-
p) 2r+ 2maen+ ke 215D, 2r+2m+n+iv kel > peqs
c) r+2mensReleicp+q;
a) r+mak+l>p,remen+tl > q

Integrals 5 zg(f) (h) are
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g;p
Yé(f)(h) Ly Se gi_’é+2+f(g2 2 - )f/z r YS(f)dgap5

Y“f’ - rPY scos! g, gsinobdbdede.

-+ -+
In these formulas,”X is the angle between the vectors ggy and Oyss € is

the heat of the reaction
E=€Y+86-—-ea-—- 5[3

kT

Let us write the following principal bracketed expressions of this type:

YU-”

Hi’.h,'{f.,,'l,f,.;-_«::n,,.np[vfu,).‘.f XS0 -2 MM Y"“”(m],
/161
(@] -
[s WAV, leopwm M { LNDS M QY"°’<0;+

Y& 0) 5 YIEVE 3
VMM 0 5 B N Y‘”oyﬁJMpMﬁézg”uJ;

[W Sa (W )WY]C:ﬁ 8n an [—-—(S +_> /M M QY()(O)(O)

f 5
+ 5 VMM, QYﬁlin-G+ )JM My 215" (0) /Mgy & 100 J

l ‘ I p

_Zi _1_0_51~ Y8(0) 25 7 500
& :,Qoqg (O)+[——2~+§e Y;s( )(1)_;/_"1?3(0)()4_

\/ _ % l{‘i;ﬂl +5 Ei‘.ﬂt Ysm(o)
M‘3M5 MﬁM 5
M Ma M. M
YB(I) ) r 5(1
\/M M S+elQ | (1)+ Mﬁu Y{3 )(2) Y6(2)(0)J
al

Y
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4, The bracketed expressions of the type

(q) (p)

(S, W ol S W W Tl = sy S, g s

X W oW, W oW £ g g gbsinodbdod ed gd, iy «

The bracketed expressions of this type are calculated from the formulas

(P) ;- ) 2\-‘0—7 a =
15, W, BYWOW, 1Sy, WeWeWplap (34)
16 pTl“/fl:A ‘Yb(r)

-5 n, HDM B ’

pyr Cwap

where /162

ST D (s 7
Frg)ﬁ_w( 1) (pﬂ})!(r tg b P+ q—r~1>p+qgr (35)

rprg-nipiq!

Summation of the right side is carried out under the conditions

p20, q=20, r5p+q. Utilizing formulas (34) and (35), we find
=0 > I' ¢ 8
w,w_, \vs]a(g:ﬁn MM, { YB(O)_sél@(lnéﬁp(z)}.

-

5. Bracketed expressions of the type

) d 0
VAT NS UM AR

ol ot

(S

2

(0) (W) 8
-y st(”’ (w’ )S(” W AW, oW r PJra 3up

x bsinodbdodedodv, dvg

can be found from the following formula

5

> > (q) 2 >0 r 16
(s DLW, , ST WOV odig = 5 marg 2 A4 o 15,

where 2
2,.= € fap b A,,\i}é;
_g;B ‘ 15 v2 oy o2 (4\4 . (36)
Tpg =€ r;k<TMO'-L)‘1 phop ™ goﬁ (3+
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i n

[S

3r+ 92k m—p-gq

, g?r‘)r—- ( ]) M
+ Q!Upg;p) r+M r) el L TR .

p+y—2r—k+m
(M «—Mp) (r+z+k— > (2k+2r—p— !

2

(’>k+2r—p q-m!(r+k —>p)'(r+k— q)'

Summation is carried out under the conditions

r>0, m>0, k0,
2r+k—wm<p+q, 2k+2r—-m>p+q.

Utilizing formulas (36) and (37), we obtain
50 15 2 5 Y0
[WE_W W W 1 ?)—l—gn np[ > M « Qa0+
& 2T v
+5x1&1\15s’zl@(1)_r.1pggp(2)].

6. Bracketed expressions of the type

o (p)
"’ W Q,S (w )WY leop— _mms" (WS,

x PJg bsinodbdodededy, iy,

(g),, -2 202 2,0, (0)
(WY W W, :WY WYfOL f

(- m)’(p+q —2r—kam)!
(36 continued)

m_gr,r+)z;p,r+kzq,} (37)

(0)

B Bap

_/_163

For calculating of the viscosity in the first approximation, we require

bracketed expression of the given type when p = q

only a
[W‘iﬁ/ V Tv']r ~Bn M M [5 Z%(O)(O)+

! M'MG Yﬁ(o)(]) _1 }'_4@_42 ¢ Yt‘)(0)(2)
"3 “oa“y 3 M M

MM M M 8
0[S (YN, P 'I?,‘”(O)].
3\ m, e M
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5. Calculation of Collision Integrals

It follows from the foregoing discussion that in order to find
transfer coefficients, collision integrals of three types must be

calculated:

2

(H ij l
o e L2rE2 () .
)$“‘/(r) v fe “Ll ‘L/ Eije

!
2} = J (Ucos’ )P, ba;

Yo g .,
2 Q 3 =VE fe giﬁ qﬁdgoﬁ, (38)

I‘YS rYa
maﬁ = Uff)aﬁgaﬁbsinodbdod@;

2

r) Y5(f) CLB h
3)g,a6 (h) =ym(e g§ﬁ+9+[(gaﬁu-s) élgdgap;

0o~

r

Y3 T yd
bog = [ff P;E cosfxgapbsinodbdod@.

Collision Integrals of the First Type

Let us calculate collision integrals of this type by using, for

example, the model of solid elastic spheres. The geometric collision

parameters are shown in Figure 2.

g

Figure 2: Changes of the relative velocity of molecules during
— L2
inelastic collisions.
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First theory. O<{ysm/2; o<)<m. Since &<g¢*, it follows 1}65

*

mm, m. m.
1 ] 2 1 i) 2 AP T
2m T, 8ij < T moam i or 8ij<8ij
j 2 j
In this case
. 2
y % i 1
@.. & e .. .. —
L] 4 pL]gL] 2 l
2

+1
QQ%n—mﬁ D kT 1_1“‘Dl “+1y_é@5[fﬂHd)+
7 ) i\ 2np 21+ 1) ’ Eij

*2r
+(r+1)gi’. +(re Drgi 20 )+...+(r+1)!g;j2+(r+1)!],

where

m, Mi Mj .
(39)

g.. = PR
2l 2kT 1

The whole integration domain is subdivided into

Second theory.
*, 0 =X = 1m; the second being

the first being gij < gij

two regions:

QL] ___Q”, OSXS 2arcsingl]/g,_]-

By performing integration we find

9 _ij
) "0 Pij kT 14 (=1 I
Qi]' (r) = —'_'Q'*""— 1 *g(‘l—:‘)—‘ (r + 1) —
B :,' « 2(r31) £ 2r—1)
- (g.. +(r+ 1)gt +(r+1)r Feoe
8ij 8 8 (40)
2 —g*z l+1 (3 1 B
+(r+])!g:f.'+(r+1)!):l+e 7ox el
! p=2 ﬁ'(l+1—p)!
[ « 2(r+1) +(T+l-—(3)gL +(r+1_ 1)(r—?)g* 2(r—1) e

gii
s e 1P *2“3*” +(r+ @\"”Fl}
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Using formulas (39) and (40), it is easy to obtain formulas for

integrals which are necessary in calculating transfer coefficients

in the first approximation.

First theory.

(I) —
(1) = "tc gl/ 1
P °ﬂn Zg” +g” +1
(-) 2 i /T —g;‘. 6 4
oD, 1 x «2
(2) = O-Ljpl,] \/2;_@ le Y G Bij '% g;j +8ij +l)];
(1) KT -8, 6 4,2
Q.. {(2) = ¢ igfl x 1 = *
0@l i 1 )

2

~87. 8 <6 4
= 19+ k ’ g1 1 1 = *2 ,
(3~ 12 G p‘/ 27y L-e <21g‘1 Ggw °U Bij 9

1166

ol
ij

Second theory.

271[1,
*2
(2) 2 ij [FkT i
] 1 — (" + 1) ’
ij ()= 270Py; zmb[ i)

9011ision Integrals of the Third Type

For calculating collision integrals of the third type

it is necessary to know the probability of inelastic

collisions f)Y5 s @S a function of the angles 0 and ¢.

op

Since such information for chemical reactions is presently unavailable,
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we shall assume that the scattering of particles is isotropic. We

can assume that collision of particles o and B with the appropriate

energies leads to the formation of an activated complex (o8) , the
dissociation of which (anfﬂy+5 leads to the scattering of particles /167
in random directions. Thus, the probability of the scattering of

particles in the solid angle dQ(G,@) is independent of the coordinates

8 and @; it depends only on the solid angle.

Then p75 is only a function of g Thus, formula (38)

of Ofﬂ.

is reduced to the following form:

rYB (41)

fr
ap = (1) P(Lfgaﬁ Hfsinf+1060sfwbdbd0d¢.

Remark 4: It follows from formula (41) that within the framework
of the theory of isotropic scattering all collision integrals of the

r
form Ql%zm+lwh)are identically equal to zero.
By performing the corresponding integration we obtain the following:

First theory.

fry e Co™(f/ar s ()P M- .. (n-ps D) 1
2 D Dy Bupop 2 ( ZepT T 2pia T MEm
‘3 ’ = - nj1(2n+1) p=o P!
Eoo9 1k —g*
Ig(zk)(h) 9 [onk T i)gg .:p ): (=D k1 B (=1 k(k D... (k—p+1) s £ (-1) k! e 0B
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Let us present specific formulas for calculating lower-order collision
integrals:

First theory.

01 0) - = \/"‘TT— P aong e e P (g;; ¥ D;

Yﬁ(m(” \/Ql_k_[ aY{SG 5;3 g;;(g;;+2g;z+ 9);
8IS0y BT G0 TRt e

2 3220 -3 273—"7 Polp s e gt:{a[g:;?3+(3—E)(g;4@+2g;(23+2)],

here
€=(€Y+€6~ Ea"‘Eg)/kT;

Second theory.
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T Y5 anT *p
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ryd(2) 2 Iyt  [amkT 3 2
Qup (0)“;}‘“aﬁpap Tl Or(gagk(ll—b)gao +6=2¢).

1L

Collision Integrals of the Second Type

Within the framework of the theory of isotropic scattering, these
integrals can easily be found as special cdses of the above-presenied
formulas for the calculation of the collision integrals of the third

type (in these formulas, it is only necessary to assume f = O, k = 0).

Isotropic scattering, first theory.

" Y5 [omkT Y 2 “Eap L2
oaﬁ(o)z ' T pgﬁ aﬁe (t‘fo«.(‘)+ h;

{3 ”05

— -8, 6 4 2
5 < '
Y9 = vzr}e_if_ E’OTE%Z.(AC (Bop+ 3@'0@*6%(’*6)

&

2

' yd

rys o9 —-gon[i i .6 A 2
Qap(3)~ \IQ’Ekf pI@ Fge (gaﬁ*ll'ga‘{%'*l:‘)ga(a"‘zdf{:’g_ﬁﬁz"r)r

Isotropic scattering, second theory.
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6. Transfer Coefficients /170

It is possible to show that phenomenological notation of the
transfer coefficients in the form of the ratio of the determinants is
the same as in a nonreacting gas. However, elements of the determinants
change. When chemical reactions do not take place in a gas mixture,
or when their effect is negligible (eg*zas>l), the formulas presented
below for transfer coefficients coincide with the corresponding formulas

for transfer coefficients ina nonreacting gas mixture.

1. Viscosity coefficient:
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2. Thermal conductivity coefficient

here
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3. Thermal diffusion coefficient
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4, Diffusion coefficient
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PERTURBATION OF THE MAXWELLIAN DISTRIBUTION
IN CHEMICALLY REACTING GAS MIXTURES

B. V. Alekseyev and V. R. Yanovskiy

/175

The situation wherein the number of inelastic collisions is of

a comparable order of magnitude as the number of elastic collisions

was considered in [1]. Here we shall consider the other limiting

case, the situation in which inelastic collisions occur significantly

less frequently than elastic ones. The notation used here is identical

to the notation used in [1]. The first approximation of the general

solution of the Boltzmann equation contains an additional scalar term,

fa(O)t . The integral equation for determining ty is as follows:
(0)
] K 2\ B (0) A(0)
&« ng p 3 i=1
A0) L(0) (o) (0) T yS . 3
_.% ? b ﬂﬂT(fY f& ~fy fﬁ )Pa@gapbsmodbdeded@dvg=

Byd

n . (6 (0) aj -
=1

]

The solution of (1) is found in the form of a series of Sonin polynomials:
(m) (2)
m 2

t,= % t,,(E)S y, (Wa)'

If necessary, in eqguation (1) one can take into account a term of the

type J(f(O)f(l)), as was done in [1]; here, however, we shall be interested

primarily in the rate of convergence of series (2). The concentration,

the mean mass velocity and the temperature of the mixture are determined

in an ordinary fashion:

Lo (0), 176
[fo dvg =n,, (3) £17

180



-»

(0) »
sfm f, Vodv, = pJo;
[ad

2 .(0)," (3 continued)
g mo Vel dva=%nkT,

In the first approximation

(0,
[fo dv, = 0;
’ 4
ay - ()

é:['nafa Vadaa =O;

o 2 (1), (5)
;J.mo‘fvafon duot =0.

K‘.’Jl.—l

Condition (3) is fulfilled, since the integrand is odd with

_’ -
respect to Va. Conditions (4) and (5) imply that

tCt

0=[); (6)

alna.:(). (7)

Let us define the temperature of the component @ by the following

relationship:

1 2 Y
T, =i Sm Vo fodv, .

o8

Then, in the first approximation, T, = T(1 - tal)' Let us, therefore,
calculate the nonequilibrium partial statistical pressure of

ponent : (0) 2
1 > <
pm=nka+§,§mOL[tmfOL Vedv, =n kT(1-t_ ).

Thus, Dalton's law has the form p, = ndkT . lLet us note that the total

pressure of the mixture p=§rqx=(§nykT(l—§11) = nkT does not change.

Applying the variation principle (see [2]), for the determining the
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expansion coefficients of (2) we obtain an infinite system of linear

algebraic equations:

{
1w E—1 m, m’ 8) 1177
9 P Qg_l [.m’(‘v)g_ am?
j-‘-‘l m’ =0 I
where mym’ (m} 2 {(m")
) . m 2
Quy =215 18T WS DL+
3 4

(m)y 2 (my 2
+5]-l[S,/2 (WOL),SI/2 (WZ )].al};

20 (m) 2 >
Rom=f Ro (), (W)dv,

where %y(%yz) is the left-hand side of equation (1). System (8) is solved
for p+l additional conditions (6) and (7); this insures the existence

of a unique solution. Let us present the ratios for calculating

the bracketed expressions on the right-hand side of eauation (1):
(m) 2
[S (W o) S,/ (W
_[s D, s wfnal:o, m=0,1,2,...;
[s“)uv ), S, (wl Wy -
(1) )
- _ts', (W ), S, (Welgg =~ 16M My 9y (1)
) (1) 2
[5(2 W), S W =
(1) (1)
=_[S(,/”(W ), S (W )]Otl_ 16 M “l{ al(2) EQal(l)};

ORUATIUAINE ‘6““’“1{[55 O=Mp 5 M‘] 0=

. )\[l S) (n)+\!l (?Ol(r;)i—l‘f ‘il an())}
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3 )
[S (“ R S (W[)I = H}! M l 73 g;l(1)+
+ 30( l[)( )——0( I;(3) + Q(;[)(‘))}

(I) (3)
[y, (Wo S'5) (W)l = B M[[—3—° oy (Ds70%) (2) -

(1)
—0 )3 }z_[s( Do, s‘”uv )

al’
(2 (3)
[s,:’uvj),sj(u’f_)]aﬁs.u 14,{{ 15 M/ + 35, M,] (D=
{Lfémfm M )]o_ (2) 2‘1129(”(3) -

2 (1) _ (2) (2)
"Ml Q’J.l( I-)+ (“v'fo\f[ QOAZ(:Z)‘QM(ZMZQ al(&)},

(2y 2 (3) 2 (1) (1
(s, s, Wy = BM, Ml{ a2, (D138 0 /(2) -

“‘2‘ (”(3)+9“1)(L)+(9(2)( . ()Q(?l)w)]

(3) 2 (3)
(s, (., s, (;va)]g,-sw wl{%[(u 48\11)(.\1 ~M,)+499 Ml} c,1(1)~

- M P*_l M+ 19(M -w[)]gal(znul [‘69 M) +90, —Ml)] e

OIS ST T \fl( M) +M>(2,)(2)

MG T MM e (0 M (3,’(3)}

(3) 2 3 3 { 1)
lS (w S W )]M=8MaMl{—3J—§ LD+
£ 32
1) (1) (l)
+ ML o{ N9 162 Q)@ ero (n-Lal G+

(3)
So @ - ne@ 24 (- e 1(3)}-

183



/179

Ro.m = Iouu (m > 2 2;

J

! ) o
L=y oy . X - -
Toi =5 r (’:YﬁA' <m oM, € Mylg—tghgl, 1= 12,...,

o eB, Coefficients A; are the following:

Y38
Ay - Mp(32500) - 2210115

A _HB[])UY 0) — 200 {3(1) + 19*5(2)]

X =M, [—<2 (0)~3oQaﬁU)+llQ ﬁ(”«——52 (3ﬂ

where SJY (h) are the collision integrals which were introduced in reference

LS
[1]. Note that in this approximation, since probability PY (gaﬁ,o ¢)

has been normalized to unity, the nonisotropicity of the dissociation
of the activated complex has no effect on calculated results. The

rate of the reaction in the first approximation will be

(0) 1 )

Ko =5 2 2 000 0y Ol

s P )PYfg Bbmnodbdodedwx

m m& ( £
v, dv =,—>, w40 ol Y_2) nonge” —ngngls
x B "fﬁY af am(‘) Y5 a' P

Note that in Ral: " o) .

%"__nﬁ_ %(% | FI>K,. . Lo }K;(;)Q,,
where Qr is the heat of the r tt homogeneous reaction. Thus, the 1}80
the multicomponent mixture correction to the reaction rate
due to the heat of reaction has the form P(E/kT)Qc-E/kT (where
P(E/kT) is the polynomial of E/kT). Thus, the evaluation of the
effect of the heat of reaction on the reaction rate presented in [3]

is not wvalid.
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In order to study the rate of convergence of (2), consider the
simplest reaction, A+A-C+D, and neglect the reaction products.
From conditions (6) and (7), it follows that to1=teo=0- The bracketed
expressions, necessary for three approximations, are the following:

on
1S, v o, 8 (W Ol lS(, e, s‘"’uv ol

—IS (W Y S (H’ MNgy=10, m-0,4L2,...;

1s‘j’ %, s W, :sz‘j’(z);
557, s, T el - e Do
15‘2’(;&'5), S(,Z)(Wi)]a L I O R ST TTE
s, o0, s Mar, 82 0P 9P o LD
lS(,' o), s (w ", - 023 22 e DREE
+ ii) sz(j)( 1 '—sz(i)(’),
ls.(,fl)urj),s USRI TR 8L 202 0 ) -
% sz(:)(’) v 113 W )(6) s _’][ sz(;)(l)-

Henceforth, it is necessary to define explicitly the

dependences P’*"-(q ) and “"(g y - Let us consider two theories:
[d¥el

wo oo OJ,

2 2 0 2 2
P'/J 1, g go, 0o » 4 q()'
o oo
2 2 ] 2 2
'), q g()’ ’ q a“'
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a2 0 2 <g°.

ao |10 8135807 oo |00 8y 80? (9)
Paa:= 2 2, o« 1 gz S 92’
0, 311> 8,7 ] 0

where é11 is the velocity along the line of centers of the molecules
.. 2 .

during the collision; 9 =E/kT. When E is the activation energy,

it is possible to show that case (9) corresponds to the choice of the

probability:

Paa =

2 2 2 2
1-g,/8", 3 >3,

The reaction rate in the ith approximation will be

. z ot . J
) (0) o amdm .
KOL = KDL 1+ -Ln—ég———"—-'““ s l = 2’ 31 4} 2o
in e (0)

The results of these calculations are summarized in the table.

The table shows that the first approximation is sufficient

for practical purposes for calculating the reaction rate

in the most interesting range, E/kT=E. With large E values, the series

K converges more slowly. The boundary of the convergence region

can be evaluated from the conditions ,tllzltzi when using two approximations.
For the first and second theories, we obtain E216.8 and E=214.1 respectively.

(0)

The point of minimum K/K for small values of E is £=5.7 by the

first theory and E=4.4 by the second theory.

First theory K/K(o) Second theory KK
Elk e s - - — - caema . =
/kT st approx- 2nd approx-|lst approx-|2nd approx-
|__imation | _imation _ | imation _imation
3 0,92943 0,92936 0,9358 0,9348
4 00,3089 0,8038 0,9130 0,9128
5 0,74205 0,73408 0,9144 0,9143
7 0,7709 0,7570 0,9499 0,9470
9 0,3714 0,8541 0,9801 0,9756
I

Commas represent decimal points.
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The third approximation for the first theory (when E equals 5, 7 and 9)

(0)

gives K/K equal to 0.73543, 0.7514, and 0.8479, respectively.
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